Home
Class 12
MATHS
(b-c)cot""1/2A+(c-a)cot""1/2B+(a-b)cot""...

`(b-c)cot""1/2A+(c-a)cot""1/2B+(a-b)cot""1/2C=……`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((b-c)\cot\frac{1}{2}A + (c-a)\cot\frac{1}{2}B + (a-b)\cot\frac{1}{2}C\), we will use the formula for \(\cot\frac{1}{2}A\), \(\cot\frac{1}{2}B\), and \(\cot\frac{1}{2}C\) in terms of the sides of the triangle and its area. ### Step-by-Step Solution: 1. **Understanding the Semi-perimeter and Area**: - Let \(s\) be the semi-perimeter of the triangle, defined as: \[ s = \frac{a + b + c}{2} \] - Let \(\Delta\) be the area of the triangle. 2. **Using the Cotangent Formula**: - We know that: \[ \cot\frac{1}{2}A = \frac{s(s-a)}{\Delta}, \quad \cot\frac{1}{2}B = \frac{s(s-b)}{\Delta}, \quad \cot\frac{1}{2}C = \frac{s(s-c)}{\Delta} \] 3. **Substituting the Cotangent Values**: - Substitute these values into the expression: \[ (b-c)\cot\frac{1}{2}A + (c-a)\cot\frac{1}{2}B + (a-b)\cot\frac{1}{2}C \] - This becomes: \[ (b-c)\frac{s(s-a)}{\Delta} + (c-a)\frac{s(s-b)}{\Delta} + (a-b)\frac{s(s-c)}{\Delta} \] 4. **Factoring Out Common Terms**: - Factor out \(\frac{s}{\Delta}\): \[ \frac{s}{\Delta} \left( (b-c)(s-a) + (c-a)(s-b) + (a-b)(s-c) \right) \] 5. **Expanding the Expression**: - Expand the terms inside the parentheses: \[ (b-c)(s-a) = bs - ba - cs + ca \] \[ (c-a)(s-b) = cs - cb - as + ab \] \[ (a-b)(s-c) = as - ac - bs + bc \] 6. **Combining Like Terms**: - Combine all the expanded terms: \[ (bs - ba - cs + ca) + (cs - cb - as + ab) + (as - ac - bs + bc) \] - After combining, we notice that all terms cancel out: - \(bs\) cancels with \(-bs\) - \(-ba\) cancels with \(ab\) - \(-cs\) cancels with \(cs\) - \(-as\) cancels with \(as\) - \(-cb\) cancels with \(bc\) - \(-ac\) cancels with \(ca\) 7. **Final Result**: - Since all terms cancel out, we have: \[ \frac{s}{\Delta} \cdot 0 = 0 \] - Therefore, the value of the expression is: \[ 0 \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|49 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that: (b-c)cot(A)/(2)+(c-a)cot(B)/(2)+(a-b)cot(C)/(2)=0

Delta ABC;(b-c)(cot A)/(2)+(c-a)(cot B)/(2)+(a-b)(cot C)/(2)

Delta ABC;(b-c)cot((A)/(2))+(c-a)cot((B)/(2))+(a-b)cot((C)/(2))

In any /_ABC, prove that (b^(2)-c^(2))cot A+(c^(2)-a^(2))cot B+(c^(a)-b^(2))cot C=0

In a ABC, prove that: (b^(2)-c^(2))cot A+(c^(2)-a^(2))cot B+(a^(2)-b^(2))cot C=0

For any triangle ABC, prove that (b^(2)c^(2))cot A+(c^(2)a^(2))cot B+(a^(2)b^(2))cot C=