Home
Class 12
MATHS
(b^2-c^2)/(cos B+cosC)+(c^2-a^2)/(cosC+c...

`(b^2-c^2)/(cos B+cosC)+(c^2-a^2)/(cosC+cosA)+(a^2-b^2)/(cosA+cosB)=……`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|49 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

Prove that (sin(B-C))/(cosB cosC)+(sin(C-A))/(cosC cosA)+(sin(A-B))/(cosA cosB) =0 .

In triangleABC, a(b^(2)+c^(2))cosA+b(c^(2)+a^(2))cosB+c(a^(2)+b^(2))cosC=

cos^(2)(A-B)+cos^(2)B-2cos(A-B).cosA.cosB=?

For any angles A,B,C. (sin(A-B))/(cosA.cosB)+(sin(B-C))/(cosB.cosC)+(sin(C-A))/(cosC.cosA)=...

In !ABC it is given that a:b:c = cos A:cos B:cos C Statement-1: !ABC is equilateral. Statement-2: cosA =(b^(2)+c^(2)-a^(2))/(2bc),cosB=(c^(2)+a^(2)-b^(2))/(2ac),cosC=(a^(2)+b^(2)-c^(2))/(2ab)

IN triangleABC, (cosC+cosA)/(c+a)+(cosB)/(b)=

In DeltaABC , prove that: sin^(2)A+sin^(2)B+sin^(2)C =1-cos^(2)A+sin^(2)B+1-cos^(2)C =2-cos(A+B)cos(A-B)-cos^(2)C =2-cos(180^(@)-C)cos(A-B)-cosC.coc{180^(@)-(A+B)} =2+cosC.cos(A-B)+cos(A+B)] =2+cosC.2cosAcosB =RHS Hence proved.

Which of the following holds goods for any tiangle ABC, a,b,c are the lengths of the sides R is circumradius (A) (cosA)/a+(cosB)/b+(cosC)/c= (a^2+b^2+c^2)/(2abc) (B) (sinA)/a+(sinB)/b+(sinC)/c=3/(2R0 (C) (cosA)/a=(cosB)/b=(cosC)/c (D) (sin2A)/a62=(sin2B)/b^2=(sin2C)/c^2

If A+B+C=pi , prove that : (cosA)/(sinBsinC) + (cosB)/(sinC sinA) + (cosC)/(sinA sinB) =2 .