Home
Class 12
MATHS
In a triangle {:abs((a,b,c),(b,c,a),(c,a...

In a triangle `{:abs((a,b,c),(b,c,a),(c,a,b)):}=0 " then " sin^3 A+sin^3 B+sin^3C=.....`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given determinant condition and apply the sine rule in the context of a triangle. Let's break down the solution step by step. ### Step-by-Step Solution: 1. **Understanding the Determinant Condition**: We start with the determinant condition given by: \[ \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0 \] This means that the rows (or columns) of the determinant are linearly dependent. **Hint**: Recall that if a determinant is zero, it indicates a linear relationship between the rows or columns. 2. **Column Operation**: We perform the column operation: \( C_1 \to C_1 + C_2 + C_3 \). This gives us: \[ \begin{vmatrix} a+b+c & b & c \\ a+b+c & c & a \\ a+b+c & a & b \end{vmatrix} = 0 \] Now, we can factor out \( (a+b+c) \) from the first column: \[ (a+b+c) \begin{vmatrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \end{vmatrix} = 0 \] **Hint**: Remember that factoring out a common term from a column in a determinant does not change its value. 3. **Setting Up the Equation**: Since the determinant is zero, we have two cases: - \( a + b + c = 0 \) - The determinant \( \begin{vmatrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \end{vmatrix} = 0 \) **Hint**: Think about the implications of \( a + b + c = 0 \) in terms of the angles of the triangle. 4. **Applying the Sine Rule**: According to the sine rule, we have: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \] From this, we can express \( a, b, c \) in terms of \( k \) and the sine of the angles: \[ a = k \sin A, \quad b = k \sin B, \quad c = k \sin C \] **Hint**: The sine rule relates the sides of a triangle to the sines of its angles. 5. **Finding \( \sin^3 A + \sin^3 B + \sin^3 C \)**: We substitute \( a, b, c \) into the expression \( \sin^3 A + \sin^3 B + \sin^3 C \): \[ \sin^3 A + \sin^3 B + \sin^3 C = \frac{a^3}{k^3} + \frac{b^3}{k^3} + \frac{c^3}{k^3} \] This can be simplified as: \[ = \frac{1}{k^3} (a^3 + b^3 + c^3) \] **Hint**: Remember the identity for the sum of cubes: \( x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2 + y^2 + z^2 - xy - xz - yz) \). 6. **Using the Condition \( a + b + c = 0 \)**: Since \( a + b + c = 0 \), we can use the identity: \[ a^3 + b^3 + c^3 = 3abc \] Therefore: \[ \sin^3 A + \sin^3 B + \sin^3 C = \frac{3abc}{k^3} \] **Hint**: The relationship between the sides and angles in a triangle is crucial for simplifying expressions. ### Final Result: Thus, we conclude that: \[ \sin^3 A + \sin^3 B + \sin^3 C = 3 \sin A \sin B \sin C \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|49 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0 , then sin^(2) A + sin^(2) B + sin^(2) C is

If (b+c)/(5)=(c+a)/(6)=(a+b)/(7) then sin A:sin B:sin C=4:3:2

In a triangle ABC, a ge b ge c. If (a^(3)+b^(3)+c^(3))/(sin ^(3)A +sin ^(3) B+sin ^(3)C)=8, then the maximum value of a sin^(3) A+sin ^(3) B+ sin^(3)C

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In triangle ABC, (b-c)sin A+(c-a) sin B+( a-b) sin C=

If in a triangle ABC, |{:(1, sin A ,sin^(2)A),(1,sin B , sin^(2)B),(1, sin C, sin^(2)C):}|= 0 then the triangle is

A + B + C = 0 ^ (0) rArr sin A + sin B + sin C =

In Delta ABC if a:b:c=3:4:5 then sin A:sin B:sin C is