Home
Class 12
MATHS
If y= tan^(-1) "" {(cos x + sin x)...

If ` y= tan^(-1) "" {(cos x + sin x)/( cos x - sin x)} ,` then ` (dy)/( dx)` =

A

0

B

1

C

`-1`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given function \( y = \tan^{-1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right) \). Here’s a step-by-step solution: ### Step 1: Rewrite the function We start with the given function: \[ y = \tan^{-1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right) \] ### Step 2: Simplify the argument of the inverse tangent To simplify the argument, we can divide both the numerator and the denominator by \( \cos x \): \[ y = \tan^{-1} \left( \frac{\frac{\cos x}{\cos x} + \frac{\sin x}{\cos x}}{\frac{\cos x}{\cos x} - \frac{\sin x}{\cos x}} \right) = \tan^{-1} \left( \frac{1 + \tan x}{1 - \tan x} \right) \] ### Step 3: Use the tangent addition formula The expression \( \frac{1 + \tan x}{1 - \tan x} \) can be recognized as the tangent of a sum: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Setting \( A = \frac{\pi}{4} \) (where \( \tan \frac{\pi}{4} = 1 \)) and \( B = x \), we have: \[ y = \tan^{-1}(\tan(x + \frac{\pi}{4})) \] Since \( \tan^{-1}(\tan \theta) = \theta \) for \( \theta \) in the principal range, we get: \[ y = x + \frac{\pi}{4} \] ### Step 4: Differentiate with respect to \( x \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( x + \frac{\pi}{4} \right) \] Since \( \frac{\pi}{4} \) is a constant, its derivative is 0: \[ \frac{dy}{dx} = 1 + 0 = 1 \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1) ((a cos x - b sin x)/(b cos x + a sin x)) " then " (dy)/(dx) = ?

If y = tan^(-1){(cos x + sinx)/(cos x - sin x)} " then " (dy)/(dx) = ?

If cos (xy) =sin (x+y) ,then (dy)/(dx)

If y=sin x+cos x then (dy)/(dx) =

If y=(x sin x+cos x)(x cos x-sin x) then find (dy)/(dx)

If y=cos (sin x ),then (dy)/(dx) =

y=(cos x+sin x)/(cos x-sin x) then dy/dx =

If y=(cos x - sin x)/(cos x + sinx) , then ((d^(2)y)/(dx^(2)))/((dy)/(dx))