Home
Class 12
MATHS
If y=tan^(-1) "" {(a cos x - b sin x)/...

If `y=tan^(-1) "" {(a cos x - b sin x)/( b cos x + a sin x)} ,(dy )/(dx)=`

A

`(1)/(1+x^2)`

B

`(1)/(sqrt(1-x^2))`

C

`-1`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given function \( y = \tan^{-1} \left( \frac{a \cos x - b \sin x}{b \cos x + a \sin x} \right) \) with respect to \( x \). ### Step-by-Step Solution: 1. **Rewrite the Function**: We start with: \[ y = \tan^{-1} \left( \frac{a \cos x - b \sin x}{b \cos x + a \sin x} \right) \] 2. **Use the Derivative of Inverse Tangent**: The derivative of \( \tan^{-1}(u) \) with respect to \( x \) is given by: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{a \cos x - b \sin x}{b \cos x + a \sin x} \). 3. **Differentiate \( u \)**: To differentiate \( u \), we will use the quotient rule: \[ u = \frac{N}{D} \quad \text{where} \quad N = a \cos x - b \sin x, \quad D = b \cos x + a \sin x \] The quotient rule states: \[ \frac{du}{dx} = \frac{N' D - N D'}{D^2} \] We need to find \( N' \) and \( D' \): - \( N' = -a \sin x - b \cos x \) - \( D' = -b \sin x + a \cos x \) Now substituting these into the quotient rule: \[ \frac{du}{dx} = \frac{(-a \sin x - b \cos x)(b \cos x + a \sin x) - (a \cos x - b \sin x)(-b \sin x + a \cos x)}{(b \cos x + a \sin x)^2} \] 4. **Simplify \( \frac{du}{dx} \)**: This expression can be simplified further, but for the sake of this problem, we will keep it as is for now. 5. **Substitute Back into the Derivative**: Now substituting \( u \) and \( \frac{du}{dx} \) back into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{1 + \left( \frac{a \cos x - b \sin x}{b \cos x + a \sin x} \right)^2} \cdot \frac{du}{dx} \] 6. **Final Expression**: The expression for \( \frac{dy}{dx} \) is now complete, and we can evaluate it further if needed.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1) ((a cos x - b sin x)/(b cos x + a sin x)) " then " (dy)/(dx) = ?

y=tan^(-1)((a cos x-b sin x)/(b cos x+a sin x)), where -(pi)/(2) -1

If y = tan^(-1){(cos x + sinx)/(cos x - sin x)} " then " (dy)/(dx) = ?

Simplify tan^(-1)[(a cos x-b sin x)/(b cos x+a sin x)], if (a)/(b)tan x>-1

if y+cos y=sin x , (dy)/(dx)=

y = (sin x) ^ (x) + tan ^ (- 1) ((cos x-sin x) / (cos x + sin x)) find (dy) / (dx)

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

Find (dy)/(dx) , when : If y=((cos x - sin x))/((cos x + sin x)) , prove that (dy)/(dx)+y^(2)+1=0 .

If y=tan^(-1)[(5cos x-12sin x)/(12cos x+5sin x)], then (dy)/(dx)=