Home
Class 12
MATHS
If y=tan^(-1) "" (x)/(1+ sqrt((1-x^2))...

If ` y=tan^(-1) "" (x)/(1+ sqrt((1-x^2)))+ sin {2 tan^(-1) "" sqrt(((1-x)/( 1+x)))}` then ` dy // dx=`

A

`(x)/(sqrt((1-x^2)))`

B

`(1-2x )/(sqrt((1-x^2)))`

C

`(1-2x)/(2sqrt((1-x^2)))`

D

`(1)/((1-x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = \tan^{-1}\left(\frac{x}{1 + \sqrt{1 - x^2}}\right) + \sin\left(2 \tan^{-1}\left(\sqrt{\frac{1 - x}{1 + x}}\right)\right), \] we will solve it step by step. ### Step 1: Simplifying the first part of \( y \) Let’s first simplify the term \( \tan^{-1}\left(\frac{x}{1 + \sqrt{1 - x^2}}\right) \). Using the substitution \( x = \sin \theta \), we have: \[ \sqrt{1 - x^2} = \sqrt{1 - \sin^2 \theta} = \cos \theta. \] Thus, we can rewrite the expression: \[ \tan^{-1}\left(\frac{\sin \theta}{1 + \cos \theta}\right). \] Using the identity \( 1 + \cos \theta = 2 \cos^2\left(\frac{\theta}{2}\right) \) and \( \sin \theta = 2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right) \): \[ \tan^{-1}\left(\frac{2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right)}{2 \cos^2\left(\frac{\theta}{2}\right)}\right) = \tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right) = \frac{\theta}{2}. \] Since \( \theta = \sin^{-1}(x) \): \[ \tan^{-1}\left(\frac{x}{1 + \sqrt{1 - x^2}}\right) = \frac{1}{2} \sin^{-1}(x). \] ### Step 2: Simplifying the second part of \( y \) Now, we simplify the second part \( \sin\left(2 \tan^{-1}\left(\sqrt{\frac{1 - x}{1 + x}}\right)\right) \). Let \( \phi = \tan^{-1}\left(\sqrt{\frac{1 - x}{1 + x}}\right) \). Then: \[ \sin(2\phi) = 2 \sin(\phi) \cos(\phi). \] Using the identity \( \sin(\phi) = \frac{\sqrt{1 - x}}{\sqrt{1 - x^2}} \) and \( \cos(\phi) = \frac{\sqrt{1 + x}}{\sqrt{1 - x^2}} \): \[ \sin(2\phi) = 2 \cdot \frac{\sqrt{1 - x}}{\sqrt{1 - x^2}} \cdot \frac{\sqrt{1 + x}}{\sqrt{1 - x^2}} = \frac{2\sqrt{(1 - x)(1 + x)}}{1 - x^2} = \frac{2\sqrt{1 - x^2}}{1 - x^2}. \] Thus, we have: \[ \sin\left(2 \tan^{-1}\left(\sqrt{\frac{1 - x}{1 + x}}\right)\right) = \frac{2\sqrt{1 - x^2}}{1 - x^2}. \] ### Step 3: Combining the parts Now we can combine both parts: \[ y = \frac{1}{2} \sin^{-1}(x) + \sqrt{1 - x^2}. \] ### Step 4: Differentiating \( y \) Now we differentiate \( y \): 1. The derivative of \( \frac{1}{2} \sin^{-1}(x) \) is \( \frac{1}{2} \cdot \frac{1}{\sqrt{1 - x^2}} \). 2. The derivative of \( \sqrt{1 - x^2} \) is \( \frac{-x}{\sqrt{1 - x^2}} \). Combining these, we have: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{1 - x^2}} - \frac{x}{\sqrt{1 - x^2}} = \frac{1 - 2x}{2\sqrt{1 - x^2}}. \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1 - 2x}{2\sqrt{1 - x^2}}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

(iv) If y=tan^(-1)(x/(1+sqrt(1-x^(2))))+sin(2tan^(-1)sqrt((1-x)/(1+x))) , then find (dy)/(dx) for x epsilon(-1,1)

If y=tan^(-1) sqrt((1-sin 4x)/(1+sin 4x)),"then " dy/dx=

Differentiate tan^(-1)(x)/(1+sqrt((1-x^(2))))+{2tan^(-1)sqrt(((1-x)/(1+x)))}sin w.r.t.x

If y=tan ^(-1) sqrt(( a-x)/( a+x)) ,then (dy)/(dx) =

Find (dy)/(dx) when (y-tan^(-1))(x)/(1+sqrt(1-x^(2)))+sin[2tan^(-1)sqrt((1-x)/(1+x))]

(tan^(-1)x)/(sqrt(1-x^(2))) withrespectto sin ^(-1)(2x sqrt(1-x^(2)))

If y=sin[2tan^(-1){sqrt((1-x)/(1+x))}], find (dy)/(dx)

If y=sin[2tan^(-1){sqrt((1-x)/(1+x))}], find (dy)/(dx)

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))+sin(2tan^(-1)theta*sqrt((1-x)/(1+x))) then prove that ,4(1-x^(2))^(3)((d^(2)y)/(dx^(2)))^(2)+4x=x^(2)+4