Home
Class 12
MATHS
tan^(-1) "" ( sqrt"" (1+x) - sqrt"" (1-...

`tan^(-1) "" ( sqrt"" (1+x) - sqrt"" (1-x))/(sqrt (1+x)+sqrt""(1-x)),(dy)/(dx)=`

A

`(1)/(sqrt""(1-x2))`

B

`(1)/(2 sqrt"" (1-x^2))`

C

`(x)/( sqrt""(1-x^2))`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \tan^{-1} \left( \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right) \) and find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Simplify the Expression We start with the expression for \( y \): \[ y = \tan^{-1} \left( \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right) \] Let’s denote: \[ u = \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \] ### Step 2: Use Substitution We can use the substitution \( x = \cos(2\theta) \). Then: \[ 1 + x = 1 + \cos(2\theta) = 2\cos^2(\theta) \] \[ 1 - x = 1 - \cos(2\theta) = 2\sin^2(\theta) \] Substituting these into \( u \): \[ u = \frac{\sqrt{2\cos^2(\theta)} - \sqrt{2\sin^2(\theta)}}{\sqrt{2\cos^2(\theta)} + \sqrt{2\sin^2(\theta)}} \] This simplifies to: \[ u = \frac{\sqrt{2}(\cos(\theta) - \sin(\theta))}{\sqrt{2}(\cos(\theta) + \sin(\theta))} = \frac{\cos(\theta) - \sin(\theta)}{\cos(\theta) + \sin(\theta)} \] ### Step 3: Further Simplification Using the tangent subtraction formula: \[ u = \tan\left(\frac{\pi}{4} - \theta\right) \] Thus, we have: \[ y = \tan^{-1}\left(\tan\left(\frac{\pi}{4} - \theta\right)\right) = \frac{\pi}{4} - \theta \] ### Step 4: Find \( \theta \) in terms of \( x \) From our substitution \( x = \cos(2\theta) \), we can express \( \theta \) as: \[ \theta = \frac{1}{2} \cos^{-1}(x) \] Thus: \[ y = \frac{\pi}{4} - \frac{1}{2} \cos^{-1}(x) \] ### Step 5: Differentiate \( y \) with respect to \( x \) Now we differentiate \( y \): \[ \frac{dy}{dx} = 0 - \frac{1}{2} \cdot \frac{d}{dx}(\cos^{-1}(x)) \] Using the derivative of \( \cos^{-1}(x) \): \[ \frac{d}{dx}(\cos^{-1}(x)) = -\frac{1}{\sqrt{1-x^2}} \] Thus: \[ \frac{dy}{dx} = -\frac{1}{2} \left(-\frac{1}{\sqrt{1-x^2}}\right) = \frac{1}{2\sqrt{1-x^2}} \] ### Final Answer The derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{1-x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}, find (dy)/(dx)

If e^(y)=(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))," then "(dy)/(dx)=

If y=tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))] then prove that (dy)/(dx)=(1)/(2sqrt(1-x^(2)))

Differentiate (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))

The differential coefficient of tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

y=(tan^(-1)(sqrt(1+x^(2))+sqrt(1-x^(2))))/(sqrt(1+x^(2))-sqrt(1-x^(2))) then (dy)/(dx)