Home
Class 12
MATHS
If e^(x) = (sqrt(1+t) - sqrt(1-t))/( sq...

If ` e^(x) = (sqrt(1+t) - sqrt(1-t))/( sqrt(1+t) + sqrt(1-t)) and tan ""(y )/(2) = sqrt((1-t)/(1+t)) " then " (dy)/(dx) "at" t= 1/2 ` is

A

`1//2`

B

`-1//2`

C

`0`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find \(\frac{dy}{dx}\) at \(t = \frac{1}{2}\) given the equations: \[ e^x = \frac{\sqrt{1+t} - \sqrt{1-t}}{\sqrt{1+t} + \sqrt{1-t}} \] and \[ \tan\left(\frac{y}{2}\right) = \sqrt{\frac{1-t}{1+t}}. \] ### Step 1: Substitute \(t = \cos(2\theta)\) We substitute \(t\) with \(\cos(2\theta)\). Then we have: \[ 1 + t = 1 + \cos(2\theta) = 2\cos^2(\theta) \] \[ 1 - t = 1 - \cos(2\theta) = 2\sin^2(\theta) \] ### Step 2: Rewrite \(e^x\) Substituting these into the equation for \(e^x\): \[ e^x = \frac{\sqrt{2\cos^2(\theta)} - \sqrt{2\sin^2(\theta)}}{\sqrt{2\cos^2(\theta)} + \sqrt{2\sin^2(\theta)}} \] This simplifies to: \[ e^x = \frac{\sqrt{2}(\cos(\theta) - \sin(\theta))}{\sqrt{2}(\cos(\theta) + \sin(\theta))} = \frac{\cos(\theta) - \sin(\theta)}{\cos(\theta) + \sin(\theta)}. \] ### Step 3: Rewrite \(\tan\left(\frac{y}{2}\right)\) Now substituting into the equation for \(\tan\left(\frac{y}{2}\right)\): \[ \tan\left(\frac{y}{2}\right) = \sqrt{\frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}} = \sqrt{\frac{2\sin^2(\theta)}{2\cos^2(\theta)}} = \tan(\theta). \] Thus, we have: \[ \frac{y}{2} = \theta \implies y = 2\theta. \] ### Step 4: Differentiate \(y\) Now we differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = 2 \frac{d\theta}{dt}. \] ### Step 5: Find \(\frac{dx}{dt}\) To find \(\frac{dx}{dt}\), we need to differentiate \(e^x\): Using the chain rule: \[ e^x \frac{dx}{dt} = \frac{d}{dt}\left(\frac{\cos(\theta) - \sin(\theta)}{\cos(\theta) + \sin(\theta)}\right). \] ### Step 6: Find \(\frac{d\theta}{dt}\) Using the relation \(t = \cos(2\theta)\): \[ \frac{dt}{d\theta} = -2\sin(2\theta) = -4\sin(\theta)\cos(\theta). \] Thus, \[ \frac{d\theta}{dt} = -\frac{1}{4\sin(\theta)\cos(\theta)}. \] ### Step 7: Substitute \(t = \frac{1}{2}\) At \(t = \frac{1}{2}\): \[ \cos(2\theta) = \frac{1}{2} \implies 2\theta = \frac{\pi}{3} \implies \theta = \frac{\pi}{6}. \] ### Step 8: Calculate \(e^x\) and \(\frac{dy}{dx}\) Substituting \(\theta = \frac{\pi}{6}\): \[ e^x = \frac{\cos(\frac{\pi}{6}) - \sin(\frac{\pi}{6})}{\cos(\frac{\pi}{6}) + \sin(\frac{\pi}{6})} = \frac{\frac{\sqrt{3}}{2} - \frac{1}{2}}{\frac{\sqrt{3}}{2} + \frac{1}{2}} = \frac{\frac{\sqrt{3}-1}{2}}{\frac{\sqrt{3}+1}{2}} = \frac{\sqrt{3}-1}{\sqrt{3}+1}. \] ### Step 9: Final Calculation of \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2 \cdot \left(-\frac{1}{4\sin(\frac{\pi}{6})\cos(\frac{\pi}{6})}\right)}{e^x \cdot \frac{d}{dt}\left(\frac{\cos(\theta) - \sin(\theta)}{\cos(\theta) + \sin(\theta)}\right)}. \] ### Step 10: Evaluate at \(t = \frac{1}{2}\) Now, substitute the values and simplify to find \(\frac{dy}{dx}\) at \(t = \frac{1}{2}\).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

e^(x)=(sqrt(1+t)-sqrt(1-t))/(sqrt(1+t)+sqrt(1-t)) andtan (y)/(2)=sqrt((1-t)/(1+t)) then (dy)/(dx) at t=(1)/(2) is (a)-(1)/(2) (b) (1)/(2)(c)0(d) none of these

If cos x =1/sqrt(1+t^(2)) , and sin y = t/sqrt(1+t^(2)) , then (dy)/(dx) =

If x=(t+1)/(t),y=(t-1)/(t)," then "(dy)/(dx)=

If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

If x=(t+(1)/(t)),y=(t-(1)/(t)) , then (dy)/(dx)=?

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then "(dy)/(dx)=

if x=sqrt((1-t^(2))/(1+t^(2))),y=(sqrt(1+t^(2))-sqrt(1-t^(2)))/(sqrt(1+t^(2))+sqrt(1-t^(2))) then (dy)/(dx)

If x=cos ^(-1) (4t^(3) -3t) ,y =tan ^(-1)((sqrt( 1-t^(2)))/( t)),then (dy)/(dx)=

Find (dx)/(dt) when x = sin^-1(t.sqrt(1-t) +sqrt(t) sqrt(1-t^2)) .

If x=sin^(-1)(3t-4t^(3)) and y=cos^(-1)sqrt(1-t^(2)) then (dy)/(dx)=