Home
Class 12
MATHS
The derivation of tan^(-1) "" {(1+x)/(...

The derivation of ` tan^(-1) "" {(1+x)/(1-x)} ` is

A

`(2)/(1+x^2)`

B

`(1)/(1+x^2)`

C

`(1 +x^2 )/(1-x^2)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \tan^{-1} \left( \frac{1+x}{1-x} \right) \), we will use the chain rule and the quotient rule. Here’s the step-by-step solution: ### Step 1: Identify the outer and inner functions Let: - \( u = \frac{1+x}{1-x} \) - \( y = \tan^{-1}(u) \) ### Step 2: Differentiate the outer function The derivative of \( y = \tan^{-1}(u) \) with respect to \( u \) is: \[ \frac{dy}{du} = \frac{1}{1+u^2} \] ### Step 3: Differentiate the inner function Now we need to differentiate \( u = \frac{1+x}{1-x} \) using the quotient rule. The quotient rule states that if \( u = \frac{f(x)}{g(x)} \), then: \[ \frac{du}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \] Here, \( f(x) = 1+x \) and \( g(x) = 1-x \). - \( f'(x) = 1 \) - \( g'(x) = -1 \) Applying the quotient rule: \[ \frac{du}{dx} = \frac{(1)(1-x) - (1+x)(-1)}{(1-x)^2} \] \[ = \frac{(1-x) + (1+x)}{(1-x)^2} = \frac{1 - x + 1 + x}{(1-x)^2} = \frac{2}{(1-x)^2} \] ### Step 4: Apply the chain rule Now we can apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{1}{1+u^2} \cdot \frac{2}{(1-x)^2} \] ### Step 5: Substitute back for \( u \) Now substitute \( u = \frac{1+x}{1-x} \) back into the equation: \[ \frac{dy}{dx} = \frac{1}{1+\left(\frac{1+x}{1-x}\right)^2} \cdot \frac{2}{(1-x)^2} \] ### Step 6: Simplify the expression To simplify \( 1 + \left(\frac{1+x}{1-x}\right)^2 \): \[ = 1 + \frac{(1+x)^2}{(1-x)^2} = \frac{(1-x)^2 + (1+x)^2}{(1-x)^2} \] Calculating the numerator: \[ (1-x)^2 + (1+x)^2 = (1 - 2x + x^2) + (1 + 2x + x^2) = 2 + 2x^2 \] Thus, \[ 1 + \left(\frac{1+x}{1-x}\right)^2 = \frac{2 + 2x^2}{(1-x)^2} \] Now substituting this back into the derivative: \[ \frac{dy}{dx} = \frac{1}{\frac{2 + 2x^2}{(1-x)^2}} \cdot \frac{2}{(1-x)^2} = \frac{(1-x)^2}{2 + 2x^2} \cdot \frac{2}{(1-x)^2} \] \[ = \frac{2}{2 + 2x^2} = \frac{1}{1 + x^2} \] ### Final Result Thus, the derivative of \( y = \tan^{-1} \left( \frac{1+x}{1-x} \right) \) is: \[ \frac{dy}{dx} = \frac{1}{1 + x^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1) ((2x)/(1-x^(2))) with respect to cos^(-1) sqrt(1 - x^(2)) is

The derivative of tan^(-1)2(x)/(1-x^(2)) with respect to sin^(-1)2(x)/(1+x^(2)), is

The derivative of tan^(-1)[(sin x)/(1+ cosx)] with respect to tan^(-1)[(cosx)/(1+sinx)] is

Find the derivative of tan^(-1)(2x)/(1-x^(2))quad w.r.t sin^(-1)(2x)/(1+x^(2))

Using a suitable substitution,find the derivative of tan ^(-1)((4sqrt(x))/(1-4x)) with respect to x.

the derivative of (tan^(-1)(6x sqrt(x)))/(1-9x^(3)) is sqrt(x)g(x) then g(x) is:

Find the derivative of tan^(-1)[(cos x)/(1+sin x)] wrt x