Home
Class 12
MATHS
If y= sin^(-1)"" (2x )/(1+x^2) + sec^(-...

If ` y= sin^(-1)"" (2x )/(1+x^2) + sec^(-1)"" (1+x^2)/(1-x^2) `, then ` (dy)/(dx)=`

A

`(4)/( 1+x^2)`

B

`(2)/( 1+x^2)`

C

` (3)/( 1+x^2)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \[ y = \sin^{-1}\left(\frac{2x}{1+x^2}\right) + \sec^{-1}\left(\frac{1+x^2}{1-x^2}\right), \] we will follow these steps: ### Step 1: Simplify the function using trigonometric identities We can use the substitution \( x = \tan(\theta) \). Thus, we have: \[ \sin^{-1}\left(\frac{2\tan(\theta)}{1+\tan^2(\theta)}\right) = \sin^{-1}(\sin(2\theta)) = 2\theta, \] because \( \frac{2\tan(\theta)}{1+\tan^2(\theta)} \) is the double angle formula for sine. ### Step 2: Simplify the second term For the second term, we have: \[ \sec^{-1}\left(\frac{1+\tan^2(\theta)}{1-\tan^2(\theta)}\right) = \sec^{-1}(\sec(2\theta)) = 2\theta, \] since \( \frac{1+\tan^2(\theta)}{1-\tan^2(\theta)} \) is the double angle formula for secant. ### Step 3: Combine the results Now, we can combine the results from the two terms: \[ y = 2\theta + 2\theta = 4\theta. \] Since \( \theta = \tan^{-1}(x) \), we can rewrite \( y \) as: \[ y = 4\tan^{-1}(x). \] ### Step 4: Differentiate \( y \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 4 \cdot \frac{d}{dx}(\tan^{-1}(x)). \] Using the derivative of \( \tan^{-1}(x) \), which is \( \frac{1}{1+x^2} \): \[ \frac{dy}{dx} = 4 \cdot \frac{1}{1+x^2}. \] ### Final Result Thus, the final result is: \[ \frac{dy}{dx} = \frac{4}{1+x^2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1)((2x)/(1+x^2))+sec^(-1)((1+x^2)/(1-x^2)), 0

If y = sec^(-1) ((1)/(2x^(2) -1)) " then " (dy)/(dx) = ?

If y=sin^(-1)((2x)/(1+x^(2)))+sec^(-1)((1+x^(2))/(1-x^(2))),0

If y=tan^(-1)((2y)/(1-x^(2)))+sec^(-1)((1+x^(2))/(1-x^(2)))x>0, prove that (dy)/(dx)=(4)/(1+x^(2))

y=sin ^(-1) (1-2x ^(2)),then (dy)/(dx)=

If y = sec^(-1) ((x^(2) + 1)/(x^(2) -1)) " then " (dy)/(dx) = ?

If y =sin ^(-1) sqrt((1+x^(2))/( 2) ),then (dy)/(dx) =

If y=sin^(-1)((1-x^(2))/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2))) find (dy)/(dx)