Home
Class 12
MATHS
If y= sin^(-1)"" 2x . ""sqrt((1-x^2))+...

If ` y= sin^(-1)"" 2x . ""sqrt((1-x^2))+ sec^(-1)"" (1)/( sqrt((1-x^2))`, then `dy// dx` =

A

`-(1)/( sqrt(1-x^2))`

B

`(2)/(sqrt(1-x^2))`

C

`(3)/( sqrt((1-x^2)))`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = \sin^{-1}(2x \sqrt{1-x^2}) + \sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right), \] we will use substitution and differentiation techniques. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = \sin \theta \). Then, \( dx = \cos \theta \, d\theta \) and \( \sqrt{1-x^2} = \sqrt{1-\sin^2 \theta} = \cos \theta \). 2. **Rewrite \( y \)**: Substitute \( x \) in the equation: \[ y = \sin^{-1}(2 \sin \theta \cos \theta) + \sec^{-1}\left(\frac{1}{\cos \theta}\right). \] Using the double angle identity, \( 2 \sin \theta \cos \theta = \sin(2\theta) \), we can simplify: \[ y = \sin^{-1}(\sin(2\theta)) + \sec^{-1}(\sec \theta). \] Since \( \sin^{-1}(\sin(2\theta)) = 2\theta \) (for \( \theta \) in the principal range) and \( \sec^{-1}(\sec \theta) = \theta \), we have: \[ y = 2\theta + \theta = 3\theta. \] 3. **Express \( \theta \)**: Since \( x = \sin \theta \), we find \( \theta = \sin^{-1}(x) \). Thus, \[ y = 3 \sin^{-1}(x). \] 4. **Differentiate \( y \)**: Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 3 \cdot \frac{d}{dx}(\sin^{-1}(x)). \] The derivative of \( \sin^{-1}(x) \) is given by: \[ \frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}. \] Therefore, \[ \frac{dy}{dx} = 3 \cdot \frac{1}{\sqrt{1-x^2}}. \] 5. **Final Result**: Thus, the derivative is: \[ \frac{dy}{dx} = \frac{3}{\sqrt{1-x^2}}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=sin ^(-1)sqrt (1-x^(2)),then (dy)/(dx)=

If y =sin ^(-1) sqrt((1+x^(2))/( 2) ),then (dy)/(dx) =

If y=sin^(-1)(x/(sqrt(1+x^2)))+cos^(-1)(1/(sqrt(1+x^2))), 0

If y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)) then find (dy)/(dx)

Differentiate sin^(-1)(2x sqrt(1-x^(2))) with respect to sec^(-1)((1)/(sqrt(1-x^(2)))), if x in(1/sqrt(2),1)

Differentiate sin^(-1)(2x sqrt(1-x^(2))) with respect to sec^(-1)((1)/(sqrt(1-x^(2)))), if x in(0,1/sqrt(2))