Home
Class 12
MATHS
If Y=tan^(-1) "" (4x)/(1+5 x^2) + tan^(-...

If `Y=tan^(-1) "" (4x)/(1+5 x^2) + tan^(-1) "" ""(2 +3x)/(3-2x) `, then `(dy)/(dx)=`

A

`(3)/(1+9x^2)`

B

`(2)/(1+4x^2)`

C

`(5)/(1+25x^2)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the given function \[ Y = \tan^{-1} \left( \frac{4x}{1 + 5x^2} \right) + \tan^{-1} \left( \frac{2 + 3x}{3 - 2x} \right), \] we can simplify the expression using the properties of the inverse tangent function. ### Step 1: Simplify the expression using the formula for the tangent addition We can use the formula for the addition of inverse tangents: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \text{ if } ab < 1. \] However, in this case, we will rewrite the two terms separately. ### Step 2: Rewrite the first term The first term can be rewritten as: \[ \tan^{-1} \left( \frac{4x}{1 + 5x^2} \right). \] ### Step 3: Rewrite the second term For the second term: \[ \tan^{-1} \left( \frac{2 + 3x}{3 - 2x} \right). \] ### Step 4: Combine the two terms Now, we can combine the two terms: \[ Y = \tan^{-1} \left( \frac{4x}{1 + 5x^2} \right) + \tan^{-1} \left( \frac{2 + 3x}{3 - 2x} \right). \] Using the addition formula, we can express \( Y \) as: \[ Y = \tan^{-1} \left( \frac{\frac{4x}{1 + 5x^2} + \frac{2 + 3x}{3 - 2x}}{1 - \left(\frac{4x}{1 + 5x^2}\right)\left(\frac{2 + 3x}{3 - 2x}\right)} \right). \] ### Step 5: Differentiate \( Y \) Now, we differentiate \( Y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{1 + \left( \frac{4x}{1 + 5x^2} + \frac{2 + 3x}{3 - 2x} \right)^2} \cdot \frac{d}{dx} \left( \frac{4x}{1 + 5x^2} + \frac{2 + 3x}{3 - 2x} \right). \] ### Step 6: Differentiate each term 1. For the first term \( \frac{4x}{1 + 5x^2} \): - Use the quotient rule: \[ \frac{d}{dx} \left( \frac{4x}{1 + 5x^2} \right) = \frac{(1 + 5x^2)(4) - 4x(10x)}{(1 + 5x^2)^2} = \frac{4 + 20x^2 - 40x^2}{(1 + 5x^2)^2} = \frac{4 - 20x^2}{(1 + 5x^2)^2}. \] 2. For the second term \( \frac{2 + 3x}{3 - 2x} \): - Again, use the quotient rule: \[ \frac{d}{dx} \left( \frac{2 + 3x}{3 - 2x} \right) = \frac{(3 - 2x)(3) - (2 + 3x)(-2)}{(3 - 2x)^2} = \frac{9 - 6x + 4 + 6x}{(3 - 2x)^2} = \frac{13}{(3 - 2x)^2}. \] ### Step 7: Combine the derivatives Now, we combine the derivatives: \[ \frac{dy}{dx} = \frac{1}{1 + \left( \frac{4x}{1 + 5x^2} + \frac{2 + 3x}{3 - 2x} \right)^2} \left( \frac{4 - 20x^2}{(1 + 5x^2)^2} + \frac{13}{(3 - 2x)^2} \right). \] ### Final Result After simplification, we find: \[ \frac{dy}{dx} = \frac{5}{1 + 25x^2}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=tan ^(-1) ((4x)/( 1+5x^(2))) +cot ^(-1) ((3-2x)/( 2+3x)),then (dy)/(dx)=

If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x > 0) then (dy)/(dx) is equal to

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^(2))+tan^(-1)(2+3x)/(3-2x)

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

If y=tan ^(-1) ((a-x) /(1+x^(2))),then (dy)/(dx) =

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^(2)))+tan^(-1)((2+3x)/(3-2x))