Home
Class 12
MATHS
The derivation of tan^(-1) "" [(2x)//...

The derivation of ` tan^(-1) "" [(2x)//(1-x^2)]w.r.t sin^(-1)"" {2x//(1+x^2)}` Is ……

A

`(2)/(1+x^2)`

B

`(2)/(sqrt(1-x^2))`

C

`1`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \) with respect to \( \sin^{-1} \left( \frac{2x}{1 + x^2} \right) \), we can follow these steps: ### Step 1: Define the functions Let \[ f(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] and \[ g(x) = \sin^{-1} \left( \frac{2x}{1 + x^2} \right). \] ### Step 2: Differentiate \( f(x) \) To differentiate \( f(x) \), we can use the substitution \( x = \tan(\theta) \). Then, we have: \[ f(x) = \tan^{-1} \left( \tan(2\theta) \right) = 2\theta. \] Since \( \theta = \tan^{-1}(x) \), we can write: \[ f(x) = 2 \tan^{-1}(x). \] Now, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} [2 \tan^{-1}(x)] = 2 \cdot \frac{1}{1 + x^2} = \frac{2}{1 + x^2}. \] ### Step 3: Differentiate \( g(x) \) Next, we differentiate \( g(x) \) using the same substitution \( x = \tan(\theta) \): \[ g(x) = \sin^{-1} \left( \sin(2\theta) \right) = 2\theta. \] Thus, we have: \[ g(x) = 2 \tan^{-1}(x). \] Now, we differentiate \( g(x) \): \[ g'(x) = \frac{d}{dx} [2 \tan^{-1}(x)] = 2 \cdot \frac{1}{1 + x^2} = \frac{2}{1 + x^2}. \] ### Step 4: Find the derivative \( \frac{df}{dg} \) Now we can find the derivative \( \frac{df}{dg} \): \[ \frac{df}{dg} = \frac{f'(x)}{g'(x)} = \frac{\frac{2}{1 + x^2}}{\frac{2}{1 + x^2}} = 1. \] ### Conclusion Thus, the derivative of \( \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \) with respect to \( \sin^{-1} \left( \frac{2x}{1 + x^2} \right) \) is: \[ \frac{df}{dg} = 1. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of tan^(-1)(2x)/(1-x^(2))quad w.r.t sin^(-1)(2x)/(1+x^(2))

Derivative of tan^(-1){(x)/(1+sqrt(1-x^(2)))}w.r.t.sin^(-1) is

The derivative of tan^(-1)2(x)/(1-x^(2)) with respect to sin^(-1)2(x)/(1+x^(2)), is

The differential coefficient of tan^(-1)((2x)/(1-x^2)) w.r.t. sin^(-1)((2x)/(1+x^2)) is equal to.........

Differentiate tan^(-1)((2x)/(1-x^(2))) w.r.t. sin^(-1)((2x)/(1+x^(2))).

Derivative of ((tan^(-1)x)/(1+tan^(-1)x)) w.r.t tan ^(-1)x is

Darivative of tan ^(-1) ((x)/( sqrt(1-x^(2)))) w.r.t. sin ^(-1) (3x -4x^(3)) is