Home
Class 12
MATHS
the derivation of cos^(-1) "" (1-x^2)/...

the derivation of ` cos^(-1) "" (1-x^2)/(1+x^2) w.r.t cot^(-1) "" (1-3x^2)/( 3x-x^3)` is

A

`1/2`

B

`2/3`

C

`1`

D

`3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \) with respect to \( \cot^{-1} \left( \frac{1 - 3x^2}{3x - x^3} \right) \), we will follow these steps: ### Step 1: Substitute \( x = \tan(\theta) \) Let \( x = \tan(\theta) \). Then, we can express both functions in terms of \( \theta \). ### Step 2: Simplify \( \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \) Using the identity for cosine of double angle: \[ \cos(2\theta) = \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)} \] Thus, \[ \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) = \cos^{-1}(\cos(2\theta)) = 2\theta \] ### Step 3: Express \( \theta \) in terms of \( x \) From our substitution, we have: \[ \theta = \tan^{-1}(x) \] So, \[ \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) = 2 \tan^{-1}(x) \] ### Step 4: Simplify \( \cot^{-1} \left( \frac{1 - 3x^2}{3x - x^3} \right) \) Using the identity for cotangent: \[ \cot(\theta) = \frac{1}{\tan(\theta)} \] We can express: \[ \cot^{-1} \left( \frac{1 - 3\tan^2(\theta)}{3\tan(\theta) - \tan^3(\theta)} \right) = \tan^{-1}(3\tan(\theta)) \] ### Step 5: Express the second function in terms of \( \theta \) Using the identity: \[ \tan^{-1}(3\tan(\theta)) = 3\theta \] Thus, we have: \[ \cot^{-1} \left( \frac{1 - 3x^2}{3x - x^3} \right) = 3\tan^{-1}(x) \] ### Step 6: Differentiate Now we need to differentiate \( 2\tan^{-1}(x) \) with respect to \( 3\tan^{-1}(x) \). Let \( u = 2\tan^{-1}(x) \) and \( v = 3\tan^{-1}(x) \). Using the chain rule: \[ \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} \] ### Step 7: Calculate \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) 1. Differentiate \( u = 2\tan^{-1}(x) \): \[ \frac{du}{dx} = \frac{2}{1 + x^2} \] 2. Differentiate \( v = 3\tan^{-1}(x) \): \[ \frac{dv}{dx} = \frac{3}{1 + x^2} \] ### Step 8: Find \( \frac{du}{dv} \) Now substituting: \[ \frac{du}{dv} = \frac{\frac{2}{1 + x^2}}{\frac{3}{1 + x^2}} = \frac{2}{3} \] ### Final Answer Thus, the derivative of \( \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \) with respect to \( \cot^{-1} \left( \frac{1 - 3x^2}{3x - x^3} \right) \) is: \[ \frac{2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

The derivative of cos^(-1)((1-x^2)/(1+x^2)) w.r.t. cot^(-1)((1-3x^2)/(3x-x^3)) .

cos^(-1)((1-x^(2))/(1+x^(2)))w.r.t. tan^(-1)x

Find the derivative of cos^(-1)[(1-x^(2))/(1+x^(2))] w.r.t.x .

The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1)x is

The derivative of sin^(-1)((2x)/(1+x^2)) w.r.t. cos^(-1)((1-x^2)/(1+x^2)) is equal to......

The derivative of 2cos^(-1)x w.r.t 2x^(2)-1 is