Home
Class 12
MATHS
if Y= cos^(-1) "" ""sqrt((sqrt(1+x^2)+1...

if ` Y= cos^(-1) "" ""sqrt((sqrt(1+x^2)+1)/(2 sqrt(1+x^2))` then ` (dy)/(dx)`=

A

`(1)/(2 (1+x^2))`

B

`(1)/(1+x^2)`

C

`-(1)/(2 (1+x^2))`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ Y = \cos^{-1} \left( \sqrt{ \frac{\sqrt{1+x^2}+1}{2\sqrt{1+x^2}} } \right), \] we will follow these steps: ### Step 1: Simplify the expression inside the inverse cosine Let \[ u = \sqrt{ \frac{\sqrt{1+x^2}+1}{2\sqrt{1+x^2}} }. \] ### Step 2: Rewrite \( u \) in terms of trigonometric functions Notice that \[ \sqrt{1+x^2} = \sec(\theta) \quad \text{where} \quad x = \tan(\theta). \] Thus, we can rewrite \( u \): \[ u = \sqrt{ \frac{\sec(\theta) + 1}{2\sec(\theta)} } = \sqrt{ \frac{1 + \cos(\theta)}{2} }. \] ### Step 3: Use the half-angle identity From the half-angle identity, we know: \[ \sqrt{\frac{1 + \cos(\theta)}{2}} = \cos\left(\frac{\theta}{2}\right). \] Thus, we can write: \[ Y = \cos^{-1} \left( \cos\left(\frac{\theta}{2}\right) \right). \] ### Step 4: Simplify \( Y \) Since \( \cos^{-1}(\cos(x)) = x \) for \( x \) in the range of \( \cos^{-1} \): \[ Y = \frac{\theta}{2}. \] ### Step 5: Substitute back for \( \theta \) Recall that \( \theta = \tan^{-1}(x) \): \[ Y = \frac{1}{2} \tan^{-1}(x). \] ### Step 6: Differentiate \( Y \) Now we differentiate \( Y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{d}{dx} \left( \tan^{-1}(x) \right). \] Using the derivative of \( \tan^{-1}(x) \): \[ \frac{d}{dx} \left( \tan^{-1}(x) \right) = \frac{1}{1+x^2}, \] we have: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{1+x^2} = \frac{1}{2(1+x^2)}. \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = \frac{1}{2(1+x^2)}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt(1+x^(2)) then (dy)/(dx) =

If x=sqrt(1-y^2) , then (dy)/(dx)=

If y=cos^(-1)sqrt((sqrt(1+x^(2))+1)/(2sqrt(1+x^(2)))),then(dy)/(dx) is equal to (a) (1)/(2(1+x^(2))),x in R(b)(1)/(2(1+x^(2))),x>0(c)(-1)/(2(1+x^(2))),x<0 (d) (1)/(2(1+x^(2))),x<0

If y=(1)/(sqrt(x^(2)-x+1)) , then (dy)/(dx)=

If y=cos ^(-1) sqrt(1+x^(2)),then (dy)/(dx) =

If y = log ((sqrt(1 + x^(2)) + x)/(sqrt(1 + x^(2)) -x)) " then " (dy)/(dx) = ?

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

If y=(x cos^(-1)x)/(sqrt(1-x^(2)))-log sqrt(1-x^(2)), then prove that (dy)/(dx)=(co^(1-x)x)/((1-x^(2))^((3)/(2)))

If y=xsin^(-1)x+sqrt(1-x^2) then (dy)/(dx)=

If y = cos^(-1) [(x+sqrt(1-x^(2)))/(sqrt(2))] then (dy)/(dx) =