Home
Class 12
MATHS
If y= sin^(-1)"" [(1-x^2)//(1 +x^2)]. T...

If ` y= sin^(-1)"" [(1-x^2)//(1 +x^2)]`. Then ` (dy)/(dx)=`

A

`-2 //(1+x^2)`

B

`2//(1+x^2)`

C

`1//(2 +x^2)`

D

`2//(2-x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function \( y = \sin^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \) with respect to \( x \). ### Step-by-Step Solution: 1. **Substitution**: We can use the substitution \( x = \tan(\theta) \). Then, we have: \[ \frac{1 - x^2}{1 + x^2} = \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)} \] Using the identity \( 1 - \tan^2(\theta) = \cos(2\theta) \) and \( 1 + \tan^2(\theta) = \sec^2(\theta) \), we can rewrite this as: \[ \frac{\cos(2\theta)}{\sec^2(\theta)} = \cos(2\theta) \cdot \cos^2(\theta) = \cos(2\theta) \] 2. **Rewrite \( y \)**: Thus, we can express \( y \) as: \[ y = \sin^{-1}(\cos(2\theta)) \] 3. **Using the identity**: We know that: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] Therefore, we can rewrite \( y \): \[ y = \frac{\pi}{2} - \cos^{-1}(\cos(2\theta)) = \frac{\pi}{2} - 2\theta \] 4. **Finding \( \theta \)**: Since \( x = \tan(\theta) \), we have: \[ \theta = \tan^{-1}(x) \] 5. **Substituting back**: Substitute \( \theta \) back into the equation for \( y \): \[ y = \frac{\pi}{2} - 2\tan^{-1}(x) \] 6. **Differentiate \( y \)**: Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 0 - 2 \cdot \frac{d}{dx}(\tan^{-1}(x)) \] The derivative of \( \tan^{-1}(x) \) is: \[ \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1 + x^2} \] Therefore: \[ \frac{dy}{dx} = -2 \cdot \frac{1}{1 + x^2} = -\frac{2}{1 + x^2} \] ### Final Result: Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{2}{1 + x^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y =sin ^(-1) sqrt((1+x^(2))/( 2) ),then (dy)/(dx) =

If y=sin ^(-1)((x)/( sqrt(x^(2) +a^(2)))) ,then (dy)/(dx)=

If y=sin^(-1)((2x)/(1+x^(2))) then (dy)/(dx) at x=-2 is

If y=3x^(3)sin^(-1)x+(x^(2)+2)sqrt(1-x^(2)), then (dy)/(dx)=

If y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)) then find (dy)/(dx)

If y=(sin x)^(x)+sin^(-1)sqrt(1-x^(2)) then find (dy)/(dx)

If y=sin^(-1)((2x)/(1+x^(2))), write the value of (dy)/(dx) for x>1