Home
Class 12
MATHS
Differentation of sin^(-1)"" (1-x)/(1+x)...

Differentation of `sin^(-1)"" (1-x)/(1+x) w.r.t sqrt(x ) ` is

A

`(1)/(1+x)`

B

`(-2)/(1+x)`

C

`(1)/(1+x^2)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( \sin^{-1} \left( \frac{1-x}{1+x} \right) \) with respect to \( \sqrt{x} \), we will follow these steps: ### Step 1: Substitute \( t = \sqrt{x} \) Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \] ### Step 2: Rewrite the function in terms of \( t \) Now, we can rewrite the function \( f(t) \): \[ f(t) = \sin^{-1} \left( \frac{1 - t^2}{1 + t^2} \right) \] ### Step 3: Simplify the expression using trigonometric identities Using the identity: \[ \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos(2\theta) \] we can set \( t = \tan(\theta) \). Thus: \[ f(t) = \sin^{-1}(\cos(2\theta)) \] ### Step 4: Use the identity \( \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \) From the identity: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] we can express \( f(t) \) as: \[ f(t) = \frac{\pi}{2} - 2\theta \] ### Step 5: Substitute back \( \theta \) Since \( \theta = \tan^{-1}(t) \), we have: \[ f(t) = \frac{\pi}{2} - 2\tan^{-1}(t) \] ### Step 6: Differentiate \( f(t) \) with respect to \( t \) Now, we differentiate \( f(t) \): \[ f'(t) = 0 - 2 \cdot \frac{1}{1 + t^2} \cdot \frac{dt}{dt} = -\frac{2}{1 + t^2} \] ### Step 7: Relate \( \frac{dt}{dt} \) to \( \frac{dx}{d\sqrt{x}} \) Since \( t = \sqrt{x} \), we have: \[ \frac{dt}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2t} \] Thus: \[ \frac{dx}{dt} = 2t \] ### Step 8: Chain rule to find \( \frac{d}{d\sqrt{x}} \) Using the chain rule: \[ \frac{d}{d\sqrt{x}} = \frac{d}{dt} \cdot \frac{dt}{d\sqrt{x}} = f'(t) \cdot \frac{dt}{d\sqrt{x}} = -\frac{2}{1 + t^2} \cdot \frac{1}{2t} \] ### Step 9: Substitute back \( t \) in terms of \( x \) Substituting \( t = \sqrt{x} \): \[ \frac{d}{d\sqrt{x}} = -\frac{1}{\sqrt{x}(1 + x)} \] ### Final Result Thus, the differentiation of \( \sin^{-1} \left( \frac{1-x}{1+x} \right) \) with respect to \( \sqrt{x} \) is: \[ -\frac{1}{\sqrt{x}(1 + x)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

Defferential Coefficient of sin^(-1)""(1-x)/(1+x)w.r.t.sqrt(x) is

Differential coefficient of sin^(-1)((1-x)/(1+x)) w.r.t sqrt(x) is

Differentiate sin^(-1)(2^(x+1)/(1+4^(x))) w.r.t. x.

Differentiate sin^(-1)(x/sqrt(1+x^(2))) w.r.t. tan^(-1)x .

Differentiate sin^(-1)((2^(x+1))/(1+4^(x))) w.r.t. x.

The differential cofficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is-

The differential coefficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is