Home
Class 12
MATHS
If y= sec tan^(-1) x"" , then (dy)/(...

If ` y= sec tan^(-1) x"" `,
then `(dy)/(dx) =`

A

`x//(1+x^2)`

B

`x sqrt""(1+ x^2)`

C

`1// sqrt((1+x^2)`

D

`x//sqrt(1+x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sec(\tan^{-1} x) \), we can follow these steps: ### Step 1: Differentiate using the chain rule We start with the function: \[ y = \sec(\tan^{-1} x) \] To differentiate this, we apply the chain rule. The derivative of \( \sec(u) \) is \( \sec(u) \tan(u) \cdot \frac{du}{dx} \), where \( u = \tan^{-1} x \). ### Step 2: Find \( \frac{du}{dx} \) Now, we need to differentiate \( u = \tan^{-1} x \): \[ \frac{du}{dx} = \frac{1}{1 + x^2} \] ### Step 3: Substitute back into the derivative Now we can substitute \( u \) back into the derivative: \[ \frac{dy}{dx} = \sec(\tan^{-1} x) \tan(\tan^{-1} x) \cdot \frac{1}{1 + x^2} \] ### Step 4: Simplify \( \sec(\tan^{-1} x) \) and \( \tan(\tan^{-1} x) \) We know that: - \( \tan(\tan^{-1} x) = x \) - To find \( \sec(\tan^{-1} x) \), we can use the identity \( \sec(\theta) = \sqrt{1 + \tan^2(\theta)} \). Thus: \[ \sec(\tan^{-1} x) = \sqrt{1 + x^2} \] ### Step 5: Substitute these values into the derivative Now substituting these values back into our derivative: \[ \frac{dy}{dx} = \sqrt{1 + x^2} \cdot x \cdot \frac{1}{1 + x^2} \] ### Step 6: Final simplification This simplifies to: \[ \frac{dy}{dx} = \frac{x \sqrt{1 + x^2}}{1 + x^2} \] ### Conclusion Thus, the final result for the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{x}{\sqrt{1 + x^2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)x ,then (dy)/(dx) is

If y=x^(tan ^(-1)x) ,then (dy)/(dx)=

If y= sec ( tan sqrt x ) ,then (dy)/(dx) =

if y=tan(sin^(-1)x) then (dy)/(dx)

If y/x=tan^(-1)(x/y) then (dy)/(dx)=

If y sec x+ tan x +x^2 y=0 , then (dy)/(dx) =

If y=tan ^(-1) ((x-a)/( x+a)),then (dy)/(dx)=

If Y = (1 + tan x)/(1 - tan x) , then (dy)/(dx) is

If y=sec(tan^(-1)x) , then (tan^(-1)x) , then (dy)/(dx)" at "x=1 is equal to