Home
Class 12
MATHS
If Y= sec^(-1)"" (sqrt""x+1)/( sqrt""x-...

If ` Y= sec^(-1)"" (sqrt""x+1)/( sqrt""x-1 )) + sin^(-1)"" (sqrt""x-1)/( sqrt""x+1) `, then ` (dy)/(dx)=`

A

1

B

2

C

3

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given function: \[ Y = \sec^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right) + \sin^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) \] ### Step 1: Simplify the Expression We can use the identity for inverse trigonometric functions: \[ \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2} \] Notice that: - Let \( y = \frac{\sqrt{x}-1}{\sqrt{x}+1} \) - Then, \( \sec^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right) \) can be rewritten using the reciprocal relation. Using the identity: \[ \sec^{-1}(z) = \cos^{-1}\left(\frac{1}{z}\right) \] We have: \[ \sec^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right) = \cos^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) \] Thus, we can rewrite \( Y \) as: \[ Y = \cos^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) + \sin^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) \] ### Step 2: Apply the Identity Now, applying the identity: \[ Y = \frac{\pi}{2} \] ### Step 3: Differentiate Since \( Y \) is a constant (\( \frac{\pi}{2} \)), its derivative with respect to \( x \) is: \[ \frac{dY}{dx} = 0 \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y= sqrt(x-1) +sqrt( x+1) ,then (dy)/(dx)

If y=sec^(-1)((sqrt(x-1))/(x+sqrt(x)))+sin^(-1)((x+sqrt(x))/(sqrt(x-1))) , then (dy)/(dx)= ……………

y = sin^(-1) {(sqrt(1 +x) + sqrt(1 -x))/(2)} " then " (dy)/(dx) = ?

Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))

If y = sec^(-1)((sqrtx-1)/(x+sqrt(3)))+ sin^(-1)((x+sqrt(3))/(sqrt(x)-1)) then find dy/dx

If y=sqrt((sqrt(x-1))/(sqrt(x+1)))," then "(dy)/(dx)|_(x=4)=