Home
Class 12
MATHS
If y= sin^(-1)"" x + sin^(-1)"" sqrt...

If ` y= sin^(-1)"" x + sin^(-1)"" sqrt"" (1-x^2) ,` then ` (dy)/(dx)=`

A

`(1)/(sqrt""(1-x2))`

B

`(x)/(sqrt(1-x^2))`

C

0

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function given by: \[ y = \sin^{-1}(x) + \sin^{-1}(\sqrt{1 - x^2}) \] ### Step 1: Differentiate the first term The derivative of \( \sin^{-1}(x) \) is given by: \[ \frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1 - x^2}} \] ### Step 2: Differentiate the second term using the chain rule For the second term \( \sin^{-1}(\sqrt{1 - x^2}) \), we apply the chain rule. First, we differentiate the outer function \( \sin^{-1}(u) \) where \( u = \sqrt{1 - x^2} \): \[ \frac{d}{dx}(\sin^{-1}(u)) = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] Now we need to find \( \frac{du}{dx} \): \[ u = \sqrt{1 - x^2} \implies \frac{du}{dx} = \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x) = \frac{-x}{\sqrt{1 - x^2}} \] ### Step 3: Combine the derivatives Now substituting \( u \) back into the derivative of \( \sin^{-1}(u) \): \[ \frac{d}{dx}(\sin^{-1}(\sqrt{1 - x^2})) = \frac{1}{\sqrt{1 - (1 - x^2)}} \cdot \left(\frac{-x}{\sqrt{1 - x^2}}\right) \] This simplifies to: \[ \frac{d}{dx}(\sin^{-1}(\sqrt{1 - x^2})) = \frac{1}{\sqrt{x^2}} \cdot \left(\frac{-x}{\sqrt{1 - x^2}}\right) = \frac{-1}{\sqrt{1 - x^2}} \] ### Step 4: Combine both derivatives Now we can combine both derivatives to find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} + \left(-\frac{1}{\sqrt{1 - x^2}}\right) \] ### Step 5: Simplify the expression This simplifies to: \[ \frac{dy}{dx} = \frac{1 - 1}{\sqrt{1 - x^2}} = 0 \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=sin ^(-1)(2x sqrt (1-x^(2))),then (dy)/(dx)=

If y=sin ^(-1)sqrt (1-x^(2)),then (dy)/(dx)=

If y =sin ^(-1) sqrt((1+x^(2))/( 2) ),then (dy)/(dx) =

If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

If y = sin^(-1) x + sin^(-1) sqrt(1 - x^(2)), - 1 le x le 1," then " (dy)/(dx) is

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

If y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)) , what is (dy)/(dx) equal to?

If y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)) then find (dy)/(dx)

y = sin^(-1) {(sqrt(1 +x) + sqrt(1 -x))/(2)} " then " (dy)/(dx) = ?