Home
Class 12
MATHS
if Y=cos^(-1) "" 2x + cot^(-1) "" 5x + s...

if `Y=cos^(-1) "" 2x + cot^(-1) "" 5x + sin^(-1)"" 2x + tan^(-1) "" 5x` then

A

`Y'(0) =0`

B

`Y_2 = Y_4`

C

`Y_5 =Y_6`

D

`Y_1 =Y_3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the expression given and analyze its behavior. Let's break it down step by step. ### Step 1: Define the function We have: \[ Y = \cos^{-1}(2x) + \cot^{-1}(5x) + \sin^{-1}(2x) + \tan^{-1}(5x) \] ### Step 2: Simplify the expression Using the identities: 1. \(\cos^{-1}(x) + \sin^{-1}(x) = \frac{\pi}{2}\) 2. \(\tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2}\) We can group the terms: - For \(\cos^{-1}(2x) + \sin^{-1}(2x)\): \[ \cos^{-1}(2x) + \sin^{-1}(2x) = \frac{\pi}{2} \] - For \(\tan^{-1}(5x) + \cot^{-1}(5x)\): \[ \tan^{-1}(5x) + \cot^{-1}(5x) = \frac{\pi}{2} \] Thus, we can simplify \(Y\): \[ Y = \frac{\pi}{2} + \frac{\pi}{2} = \pi \] ### Step 3: Differentiate the function Now, we differentiate \(Y\) with respect to \(x\): \[ \frac{dY}{dx} = 0 \] Since \(Y\) is a constant (\(\pi\)), its derivative is zero. ### Step 4: Evaluate the first derivative at \(x = 0\) \[ Y' = 0 \quad \text{for all } x \] Thus, \[ Y'(0) = 0 \] ### Step 5: Find higher-order derivatives Since the first derivative is zero, the second derivative will also be zero: \[ Y'' = 0 \] \[ Y''(0) = 0 \] Continuing this process, we find that: \[ Y^{(n)} = 0 \quad \text{for all } n \geq 1 \] ### Conclusion Thus, we have: - \(Y' = 0\) - \(Y'' = 0\) - \(Y^{(3)} = 0\) - \(Y^{(4)} = 0\) - and so on... ### Final Answer All derivatives of \(Y\) evaluated at \(x = 0\) are zero.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

If A=sin[cot^(-1){cos(tan^(-1)x)}], then

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

sin {cot^(-1)[tan (cos^(-1)x)]=

The value of 2tan^(-1)(cos ec tan^(-1)x-tan cot^(-1)x) is equal to (a)cot ^(-1)x( b ) (cot^(-1)1)/(x) (c)tan ^(-1)x (d) none of these

sin^-1(cos x)+tan ^-1(cot x)

If "tan"^(-1)(x+1)+cot^(-1)(x-1)="sin"^(-1) (4/5) + cos^(-1) (3/5) , then x has the value: