Home
Class 12
MATHS
If y=f(x) = ((tan^m x)/(tan^n x)) ^(m+n...

If ` y=f(x) = ((tan^m x)/(tan^n x)) ^(m+n) .((tan^n x)/(tan^p x))((tan^p x)/(tan^m x)) ` then ` (dy)/(dx)`=

A

0

B

1

C

`tan^(m+n+p)`x

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function given by \[ y = f(x) = \left(\frac{\tan^m x}{\tan^n x}\right)^{m+n} \cdot \left(\frac{\tan^n x}{\tan^p x}\right) \cdot \left(\frac{\tan^p x}{\tan^m x}\right), \] we will simplify the expression step by step before differentiating. ### Step 1: Simplify the expression We can rewrite the function \( y \) as follows: \[ y = \left(\tan^m x \cdot \tan^{-n} x\right)^{m+n} \cdot \left(\tan^n x \cdot \tan^{-p} x\right) \cdot \left(\tan^p x \cdot \tan^{-m} x\right). \] Using the property of exponents \( a^m \cdot a^n = a^{m+n} \), we can combine the terms: \[ y = \tan^{m(m+n)} x \cdot \tan^{-n(m+n)} x \cdot \tan^{n-p} x \cdot \tan^{p-m} x. \] Now, we can combine the powers of \( \tan x \): \[ y = \tan^{m(m+n) - n(m+n) + (n-p) + (p-m)} x. \] ### Step 2: Combine the exponents Now, let's simplify the exponent: \[ m(m+n) - n(m+n) + (n-p) + (p-m) = m^2 + mn - nm - n^2 + n - p + p - m. \] This simplifies to: \[ m^2 - n^2 + n - m. \] So we have: \[ y = \tan^{m^2 - n^2 + n - m} x. \] ### Step 3: Differentiate using the chain rule Now we will differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left(\tan^{m^2 - n^2 + n - m} x\right). \] Using the chain rule, we have: \[ \frac{dy}{dx} = (m^2 - n^2 + n - m) \tan^{m^2 - n^2 + n - m - 1} x \cdot \sec^2 x. \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = (m^2 - n^2 + n - m) \tan^{m^2 - n^2 + n - m - 1} x \cdot \sec^2 x. \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

"If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).

If y=x^(tan x)+(tan x)^(x) , then find (dy)/(dx)

If y = (tan x)^(x) , then (dy)/(dx) =

If y=x^(tan ^(-1)x) ,then (dy)/(dx)=

If y = (tan x)^(cot x) " then " (dy)/(dx)= ?

If y= (tan x )^(sin x ) ,then (dy)/(dx)=

If x=y tan((x)/(2)), then (dy)/(dx)=

y=x^(tan(x))+(tan x)^(x) , find (dy)/(dx)

(d)/(dx)((1-tan x)/(1+tan x))*(d)/(dx)((1-tan x)/(1+tan x))

If Y = (1 + tan x)/(1 - tan x) , then (dy)/(dx) is