Home
Class 12
MATHS
If y=(1)/(1+x^(q-p) +x^(r-p) ) +(1)/( 1...

If ` y=(1)/(1+x^(q-p) +x^(r-p) ) +(1)/( 1+x^(r-q) + x^(p-q)) + (1)/( 1+x^(p-r) +x^(q-r))` then ` (dy)/(dx)=`

A

0

B

1

C

`(p+q+r) x^(p+q+r)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to differentiate the function: \[ y = \frac{1}{1 + x^{q-p} + x^{r-p}} + \frac{1}{1 + x^{r-q} + x^{p-q}} + \frac{1}{1 + x^{p-r} + x^{q-r}} \] ### Step 1: Rewrite the function We can rewrite the function \(y\) as: \[ y = \frac{1}{1 + x^{q-p} + x^{r-p}} + \frac{1}{1 + x^{r-q} + x^{p-q}} + \frac{1}{1 + x^{p-r} + x^{q-r}} \] ### Step 2: Differentiate each term To find \(\frac{dy}{dx}\), we will differentiate each term separately using the quotient rule. The derivative of \(\frac{1}{u}\) is \(-\frac{1}{u^2} \frac{du}{dx}\). #### For the first term: Let \(u_1 = 1 + x^{q-p} + x^{r-p}\) \[ \frac{du_1}{dx} = (q-p)x^{q-p-1} + (r-p)x^{r-p-1} \] Thus, \[ \frac{d}{dx}\left(\frac{1}{u_1}\right) = -\frac{1}{(u_1)^2} \frac{du_1}{dx} = -\frac{(q-p)x^{q-p-1} + (r-p)x^{r-p-1}}{(1 + x^{q-p} + x^{r-p})^2} \] #### For the second term: Let \(u_2 = 1 + x^{r-q} + x^{p-q}\) \[ \frac{du_2}{dx} = (r-q)x^{r-q-1} + (p-q)x^{p-q-1} \] Thus, \[ \frac{d}{dx}\left(\frac{1}{u_2}\right) = -\frac{1}{(u_2)^2} \frac{du_2}{dx} = -\frac{(r-q)x^{r-q-1} + (p-q)x^{p-q-1}}{(1 + x^{r-q} + x^{p-q})^2} \] #### For the third term: Let \(u_3 = 1 + x^{p-r} + x^{q-r}\) \[ \frac{du_3}{dx} = (p-r)x^{p-r-1} + (q-r)x^{q-r-1} \] Thus, \[ \frac{d}{dx}\left(\frac{1}{u_3}\right) = -\frac{1}{(u_3)^2} \frac{du_3}{dx} = -\frac{(p-r)x^{p-r-1} + (q-r)x^{q-r-1}}{(1 + x^{p-r} + x^{q-r})^2} \] ### Step 3: Combine the derivatives Now, we can combine the derivatives of all three terms: \[ \frac{dy}{dx} = -\frac{(q-p)x^{q-p-1} + (r-p)x^{r-p-1}}{(1 + x^{q-p} + x^{r-p})^2} - \frac{(r-q)x^{r-q-1} + (p-q)x^{p-q-1}}{(1 + x^{r-q} + x^{p-q})^2} - \frac{(p-r)x^{p-r-1} + (q-r)x^{q-r-1}}{(1 + x^{p-r} + x^{q-r})^2} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is given by: \[ \frac{dy}{dx} = -\left[\frac{(q-p)x^{q-p-1} + (r-p)x^{r-p-1}}{(1 + x^{q-p} + x^{r-p})^2} + \frac{(r-q)x^{r-q-1} + (p-q)x^{p-q-1}}{(1 + x^{r-q} + x^{p-q})^2} + \frac{(p-r)x^{p-r-1} + (q-r)x^{q-r-1}}{(1 + x^{p-r} + x^{q-r})^2}\right] \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y = (1)/(1+x^( p-r) +x^(q-r)) +(1)/( 1+ x^(p-q) +x^(r-q) )+ (1) /( 1+x^(q-p) +x^(r-p)),then (dy)/(dx) =

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^(p) + y^(q) = (x + y)^(p+q) , " then" (dy)/(dx) is

x^(p-q).x^(q-r).x^(r-p)

The value of (x^(q)/x^(r))^(1/(qr)) xx (x^(r)/x^(p))^(1/(rp)) xx (x^(p)/x^(q))^(1/(pq) is equal to:

((x^(p))/(x^(q)))^((p+q))((x^(q))/(x^(r)))^((q+r))((x^(r))/(x^(p)))^((r+p))

sqrt(x^(p-q))sqrt(x^(q-r))sqrt(x^(r-p))=1