Home
Class 12
MATHS
if f (x) sin {(pi)/(3) [X]-x^2} for 2...

if `f (x) sin {(pi)/(3) [X]-x^2}` for ` 2 lt x lt 3 ` and [X] denotes the greatest integer less than or equal to x then ` f' [sqrt(pi //3)] ` is equal to

A

`- sqrt((pi)/(3))`

B

`sqrt(pi/3)`

C

`- sqrt(pi)/(2)`

D

`- sqrt( pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f(x) = \sin\left(\frac{\pi}{3} [x] - x^2\right) \) for \( 2 < x < 3 \), and then evaluate \( f'(\sqrt{\frac{\pi}{3}}) \). ### Step 1: Determine the value of \([x]\) Since \( 2 < x < 3 \), the greatest integer function \([x]\) will be equal to \(2\). ### Step 2: Substitute \([x]\) into the function Now we substitute \([x] = 2\) into the function: \[ f(x) = \sin\left(\frac{\pi}{3} \cdot 2 - x^2\right) = \sin\left(\frac{2\pi}{3} - x^2\right) \] ### Step 3: Differentiate the function Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left(\sin\left(\frac{2\pi}{3} - x^2\right)\right) \] Using the chain rule: \[ f'(x) = \cos\left(\frac{2\pi}{3} - x^2\right) \cdot \frac{d}{dx}\left(\frac{2\pi}{3} - x^2\right) \] The derivative of \(\frac{2\pi}{3} - x^2\) is \(-2x\), so: \[ f'(x) = -2x \cos\left(\frac{2\pi}{3} - x^2\right) \] ### Step 4: Evaluate \( f'(\sqrt{\frac{\pi}{3}}) \) Now we substitute \( x = \sqrt{\frac{\pi}{3}} \) into the derivative: \[ f'\left(\sqrt{\frac{\pi}{3}}\right) = -2\left(\sqrt{\frac{\pi}{3}}\right) \cos\left(\frac{2\pi}{3} - \left(\sqrt{\frac{\pi}{3}}\right)^2\right) \] Calculating \(\left(\sqrt{\frac{\pi}{3}}\right)^2\): \[ \left(\sqrt{\frac{\pi}{3}}\right)^2 = \frac{\pi}{3} \] Thus: \[ f'\left(\sqrt{\frac{\pi}{3}}\right) = -2\left(\sqrt{\frac{\pi}{3}}\right) \cos\left(\frac{2\pi}{3} - \frac{\pi}{3}\right) \] This simplifies to: \[ f'\left(\sqrt{\frac{\pi}{3}}\right) = -2\left(\sqrt{\frac{\pi}{3}}\right) \cos\left(\frac{\pi}{3}\right) \] We know that \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}\): \[ f'\left(\sqrt{\frac{\pi}{3}}\right) = -2\left(\sqrt{\frac{\pi}{3}}\right) \cdot \frac{1}{2} \] This simplifies to: \[ f'\left(\sqrt{\frac{\pi}{3}}\right) = -\sqrt{\frac{\pi}{3}} \] ### Final Answer Thus, the value of \( f'(\sqrt{\frac{\pi}{3}}) \) is: \[ \boxed{-\sqrt{\frac{\pi}{3}}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the greatest integer less than or equal to x, then f'"("sqrt(pi//3)")" is equal to

Let [x] denote the greatest integer less than or equal to x. If x=(sqrt(3)+1)^(5), then [x] is equal to

Let [x] denotes the greatest integer less than or equal to x and f(x)= [tan^(2)x] .Then

If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2 , and [x] denotes the greatest integer less than or equal to x, then the value of f'(root(3)((pi)/(2))) , is

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

if [x] denotes the greatest integer less than or equal to x, than lim_(xrarr0)(x[x])/(sin|x|) , is

Let |x| be the greatest integer less than or equal to x, Then f(x)= x cos (pi (x+[x]) is continous at