Home
Class 12
MATHS
the derivative of the function cot^(...

the derivative of the function ` cot^(-1) "" [(cos 2x ]^(1//2) ] " at" x=(pi)/(6) ` is

A

`(2//3)^(1//2)`

B

`(1//3)^(1//2)`

C

`3^(1//2)`

D

`6^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \cot^{-1} \left( \sqrt{\cos(2x)} \right) \) at \( x = \frac{\pi}{6} \), we will follow these steps: ### Step 1: Differentiate the Function Using the chain rule, we differentiate \( y \) with respect to \( x \). \[ y = \cot^{-1} \left( \sqrt{\cos(2x)} \right) \] The derivative of \( \cot^{-1}(u) \) is given by: \[ \frac{dy}{du} = -\frac{1}{1 + u^2} \] where \( u = \sqrt{\cos(2x)} \). ### Step 2: Differentiate the Inner Function Now, we need to differentiate \( u = \sqrt{\cos(2x)} \). Using the chain rule again: \[ \frac{du}{dx} = \frac{1}{2\sqrt{\cos(2x)}} \cdot \frac{d}{dx}(\cos(2x)) \] The derivative of \( \cos(2x) \) is: \[ \frac{d}{dx}(\cos(2x)) = -\sin(2x) \cdot 2 = -2\sin(2x) \] Thus, \[ \frac{du}{dx} = \frac{1}{2\sqrt{\cos(2x)}} \cdot (-2\sin(2x)) = -\frac{\sin(2x)}{\sqrt{\cos(2x)}} \] ### Step 3: Combine Derivatives Now we can combine the derivatives using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{1}{1 + u^2} \cdot \left(-\frac{\sin(2x)}{\sqrt{\cos(2x)}}\right) \] Substituting \( u = \sqrt{\cos(2x)} \): \[ \frac{dy}{dx} = \frac{\sin(2x)}{\sqrt{\cos(2x)} \left( 1 + \cos(2x) \right)} \] ### Step 4: Evaluate at \( x = \frac{\pi}{6} \) Now we need to evaluate this derivative at \( x = \frac{\pi}{6} \). First, calculate \( \cos(2x) \) at \( x = \frac{\pi}{6} \): \[ \cos(2 \cdot \frac{\pi}{6}) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Next, calculate \( \sin(2x) \): \[ \sin(2 \cdot \frac{\pi}{6}) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Now substitute these values into the derivative: \[ \frac{dy}{dx} = \frac{\frac{\sqrt{3}}{2}}{\sqrt{\frac{1}{2}} \left( 1 + \frac{1}{2} \right)} = \frac{\frac{\sqrt{3}}{2}}{\sqrt{\frac{1}{2}} \cdot \frac{3}{2}} \] Calculating \( \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} \): \[ \frac{dy}{dx} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{\sqrt{2}} \cdot \frac{3}{2}} = \frac{\sqrt{3}}{2} \cdot \frac{2\sqrt{2}}{3} = \frac{\sqrt{6}}{3} \] ### Final Answer Thus, the derivative of the function \( y = \cot^{-1} \left( \sqrt{\cos(2x)} \right) \) at \( x = \frac{\pi}{6} \) is: \[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{6}} = \frac{\sqrt{6}}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

The derivative of the function cot^(-1){(cos2x)^((1)/(2))} at x=(pi)/(6) is ((2)/(3))^((1)/(2))(b)((1)/(3))^((1)/(2))(c)3^((1)/(2))(d)6^((1)/(2))

The derivative of the function cot^(-1){(cos2x)^(1/2)} at x=pi/6 is (2/3)^(1/2) (b) (1/3)^(1/2)(c)3^(1/2)(d)6^(1/2)

The differential coeffcient of cot^(-1)(sqrtcos2x)at x = (pi)/(6) is

The first derivative of the function [cos^(-1)(sin sqrt((1+x)/(2)))+x^(x)] with respect to x at x=1 is

The domain set of the function f(x) = tan^(-1) x -cot ^(-1) x + cos ^(-1) ( 2-x) is

If f(x)=cot^(-1)sqrt(cos2x)," then: "f'((pi)/(6))=

cos ^ (- 1) x + sin ^ (- 1) ((1) / (2) x) = (pi) / (6)

Discuss the continuity of the function f(x) ={:{((1+cos x)/(tan^2 x) ", "x ne pi),((1)/(2) ", " x=pi):}, at =pi .

cos ^ (- 1) x + sin ^ (- 1) ((x) / (2)) = (pi) / (6)

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to