Home
Class 12
MATHS
If y= sin^(-1)"" sqrt""(1-x)+ cos ^(-1) ...

If `y= sin^(-1)"" sqrt""(1-x)+ cos ^(-1) sqrt""x` then ` dy//dx =`

A

`(1)/( sqrt""[x(1-x)])`

B

`(-1)/(sqrt""[x(1-x)])`

C

`(1)/([x(1-x)])`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = \sin^{-1}(\sqrt{1-x}) + \cos^{-1}(\sqrt{x}) \), we will differentiate each term separately using the chain rule. ### Step-by-Step Solution: 1. **Identify the function:** \[ y = \sin^{-1}(\sqrt{1-x}) + \cos^{-1}(\sqrt{x}) \] 2. **Differentiate the first term \( \sin^{-1}(\sqrt{1-x}) \):** - The derivative of \( \sin^{-1}(u) \) is \( \frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} \). - Let \( u = \sqrt{1-x} \), then \( \frac{du}{dx} = \frac{1}{2\sqrt{1-x}} \cdot (-1) = -\frac{1}{2\sqrt{1-x}} \). - Now, we need \( 1-u^2 = 1 - (1-x) = x \). - Thus, the derivative of the first term is: \[ \frac{d}{dx} \left( \sin^{-1}(\sqrt{1-x}) \right) = \frac{1}{\sqrt{x}} \cdot \left(-\frac{1}{2\sqrt{1-x}}\right) = -\frac{1}{2\sqrt{x(1-x)}} \] 3. **Differentiate the second term \( \cos^{-1}(\sqrt{x}) \):** - The derivative of \( \cos^{-1}(v) \) is \( -\frac{1}{\sqrt{1-v^2}} \cdot \frac{dv}{dx} \). - Let \( v = \sqrt{x} \), then \( \frac{dv}{dx} = \frac{1}{2\sqrt{x}} \). - Now, we need \( 1-v^2 = 1 - x \). - Thus, the derivative of the second term is: \[ \frac{d}{dx} \left( \cos^{-1}(\sqrt{x}) \right) = -\frac{1}{\sqrt{1-x}} \cdot \left(\frac{1}{2\sqrt{x}}\right) = -\frac{1}{2\sqrt{x(1-x)}} \] 4. **Combine the derivatives:** \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{x(1-x)}} - \frac{1}{2\sqrt{x(1-x)}} \] \[ \frac{dy}{dx} = -\frac{2}{2\sqrt{x(1-x)}} = -\frac{1}{\sqrt{x(1-x)}} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{x(1-x)}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

y = sin^(-1) {(sqrt(1 +x) + sqrt(1 -x))/(2)} " then " (dy)/(dx) = ?

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

Knowledge Check

  • If y= sin^(-1)"" (sqrt"" (1+x)+sqrt""(1-x))/(2) then (dy)/(dx) =

    A
    `(1)/( sqrt""(1-x^2))`
    B
    `-(1)/(sqrt(1-x^2))`
    C
    `-(1)/(2(sqrt(1-x^2))`
    D
    None
  • If y= cos ^(-1)sqrt (1-x) ,then (dy)/(dx) =

    A
    ` (-1)/(2sqrt( x-x^(2)))`
    B
    ` (1)/(2sqrt( x-x^(2)))`
    C
    ` (-2)/(2sqrt( x-x^(2)))`
    D
    ` (2)/(2sqrt( x-x^(2)))`
  • If Y= sec^(-1)"" (sqrt""x+1)/( sqrt""x=1 )) + sin^(-1)"" (sqrt""x-1)/( sqrt""x+1) , then (dy)/(dx)=

    A
    1
    B
    2
    C
    3
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If y=cos ^(-1) sqrt(1+x^(2)),then (dy)/(dx) =

    If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

    If y=cos ^(-1) ((sqrt (1+x) -sqrt (1-x) )/( 2)) ,then (dy)/(dx)=

    if Y= log((1 + sqrt""x)/(1-sqrt""x )) then (dy)/(dx) =

    If y= sin ^(-1) ((x)/(1+ sqrt(1- x ^(2)))), |x|le 1, then (dy)/(dx) at ((1)/(2)) is: