Home
Class 12
MATHS
If Y= tan^(-1) "" [{sqrt""(1+x^2)-1}//x...

If ` Y= tan^(-1) "" [{sqrt""(1+x^2)-1}//x]` then

A

`Y'(0) =1`

B

`y'(0) =1/2`

C

`y'(0) =0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function \( Y = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \) and find the value of the derivative at \( x = 0 \). ### Step-by-step Solution: 1. **Substitution**: Let \( x = \tan(\theta) \). Then, we have: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2(\theta)} = \sec(\theta) \] Therefore, the expression inside the arctangent becomes: \[ \frac{\sqrt{1+x^2}-1}{x} = \frac{\sec(\theta)-1}{\tan(\theta)} \] 2. **Simplifying the Expression**: We can rewrite \( \tan(\theta) \) as \( \frac{\sin(\theta)}{\cos(\theta)} \): \[ \frac{\sec(\theta)-1}{\tan(\theta)} = \frac{\sec(\theta)-1}{\frac{\sin(\theta)}{\cos(\theta)}} = \frac{(\sec(\theta)-1)\cos(\theta)}{\sin(\theta)} \] Now, substituting \( \sec(\theta) = \frac{1}{\cos(\theta)} \): \[ = \frac{\frac{1}{\cos(\theta)} - 1}{\frac{\sin(\theta)}{\cos(\theta)}} = \frac{1 - \cos(\theta)}{\sin(\theta)} \] 3. **Using Trigonometric Identity**: We can use the identity \( 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right) \): \[ = \frac{2\sin^2\left(\frac{\theta}{2}\right)}{\sin(\theta)} = \frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)} = \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} = \tan\left(\frac{\theta}{2}\right) \] 4. **Final Expression for Y**: Thus, we have: \[ Y = \tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right) = \frac{\theta}{2} \] 5. **Substituting Back for x**: Since \( \theta = \tan^{-1}(x) \), we get: \[ Y = \frac{1}{2} \tan^{-1}(x) \] 6. **Differentiating Y**: Now, we differentiate \( Y \) with respect to \( x \): \[ \frac{dY}{dx} = \frac{1}{2} \cdot \frac{1}{1+x^2} \] 7. **Finding the Value at x = 0**: Now, substituting \( x = 0 \): \[ \frac{dY}{dx} \bigg|_{x=0} = \frac{1}{2} \cdot \frac{1}{1+0^2} = \frac{1}{2} \] ### Final Answer: The value of the derivative \( \frac{dY}{dx} \) at \( x = 0 \) is \( \frac{1}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If: tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4 then : x =

tan[(sqrt(1+x^(2))-1)/x] =

Solve y=tan^(-1)((sqrt(1+x^(2))-1)/(x))

If y=tan^(-1)((x)/(sqrt(1+x^(2))-1)), then (dy)/(dx)=

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=