Home
Class 12
MATHS
If y= sin(2 sin^(-1)"" x). (dy)/(dx)=...

If ` y= sin(2 sin^(-1)"" x). (dy)/(dx)=`

A

`sqrt(((1-y^2)/(1-x^2))`

B

`2 ((1-2x^2))/sqrt((1-x^2))`

C

`sqrt((1-x^2))/(1-y^2))`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) for the function \(y = \sin(2 \sin^{-1}(x))\), we will follow these steps: ### Step 1: Rewrite the Function We start with the function: \[ y = \sin(2 \sin^{-1}(x)) \] Using the double angle formula for sine, we can rewrite this as: \[ y = 2x \sqrt{1 - x^2} \] This comes from the identity: \[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \] where \(\theta = \sin^{-1}(x)\), thus \(\sin(\theta) = x\) and \(\cos(\theta) = \sqrt{1 - x^2}\). ### Step 2: Differentiate the Function Now we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}(2x\sqrt{1 - x^2}) \] Using the product rule, where \(u = 2x\) and \(v = \sqrt{1 - x^2}\): \[ \frac{dy}{dx} = u'v + uv' \] Calculating \(u'\) and \(v'\): - \(u' = 2\) - For \(v = (1 - x^2)^{1/2}\), using the chain rule: \[ v' = \frac{1}{2}(1 - x^2)^{-1/2} \cdot (-2x) = -\frac{x}{\sqrt{1 - x^2}} \] ### Step 3: Substitute and Simplify Now substituting \(u\), \(u'\), \(v\), and \(v'\) into the product rule: \[ \frac{dy}{dx} = 2 \cdot \sqrt{1 - x^2} + 2x \left(-\frac{x}{\sqrt{1 - x^2}}\right) \] This simplifies to: \[ \frac{dy}{dx} = 2\sqrt{1 - x^2} - \frac{2x^2}{\sqrt{1 - x^2}} \] Combining the terms over a common denominator: \[ \frac{dy}{dx} = \frac{2(1 - x^2) - 2x^2}{\sqrt{1 - x^2}} = \frac{2(1 - 2x^2)}{\sqrt{1 - x^2}} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{2(1 - 2x^2)}{\sqrt{1 - x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=sin(2sin^(-1)x) then (dy)/(dx)=

If y=sin(2 sin^(-1)x) , then (dy)/(dx) =

sin^(-1) ((dy)/(dx))= x+y

if y=tan(sin^(-1)x) then (dy)/(dx)

If y=sin(2sin^(-1)x) , show that: (dy)/(dx)=2sqrt((1-y^(2))/(1-x^(2))) .

if y=sin^(-1)x then (dy)/(dx) is

y=sin ^(-1) (1-2x ^(2)),then (dy)/(dx)=

If y=e^(sin^(2)x) then (dy)/(dx)=

If y= sin(x^(2)) , Find (dy)/(dx)