Home
Class 12
MATHS
Derivatice of sec^(-1)"" { 1 //(2x^2 -...

Derivatice of ` sec^(-1)"" { 1 //(2x^2 -1 } w.r.t sqrt""(1+ 3x )` at ` x=- 1/3` is

A

0

B

`1//2`

C

`1//3`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \sec^{-1} \left( \frac{1}{2x^2 - 1} \right) \) with respect to \( z = \sqrt{1 + 3x} \) at \( x = -\frac{1}{3} \), we will follow these steps: ### Step 1: Define the Functions Let: - \( y = \sec^{-1} \left( \frac{1}{2x^2 - 1} \right) \) - \( z = \sqrt{1 + 3x} \) ### Step 2: Differentiate \( y \) with respect to \( x \) Using the chain rule, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{d}{dx} \left( \sec^{-1}(u) \right) \cdot \frac{du}{dx} \] where \( u = \frac{1}{2x^2 - 1} \). The derivative of \( \sec^{-1}(u) \) is: \[ \frac{d}{du} \left( \sec^{-1}(u) \right) = \frac{1}{|u| \sqrt{u^2 - 1}} \] Now, we need to find \( \frac{du}{dx} \): \[ u = \frac{1}{2x^2 - 1} \implies \frac{du}{dx} = -\frac{2x}{(2x^2 - 1)^2} \] Now substituting \( u \) and \( \frac{du}{dx} \) into the derivative of \( y \): \[ \frac{dy}{dx} = \frac{1}{\left| \frac{1}{2x^2 - 1} \right| \sqrt{\left( \frac{1}{2x^2 - 1} \right)^2 - 1}} \cdot \left( -\frac{2x}{(2x^2 - 1)^2} \right) \] ### Step 3: Simplify \( \frac{dy}{dx} \) Now we simplify: \[ \frac{dy}{dx} = -\frac{2x}{(2x^2 - 1)^2} \cdot \frac{(2x^2 - 1)}{\left| 2x^2 - 1 \right| \sqrt{\frac{1}{(2x^2 - 1)^2} - 1}} \] This can be further simplified, but let's keep it in this form for now. ### Step 4: Differentiate \( z \) with respect to \( x \) Now we differentiate \( z \): \[ z = \sqrt{1 + 3x} \implies \frac{dz}{dx} = \frac{3}{2\sqrt{1 + 3x}} \] ### Step 5: Use the Chain Rule to Find \( \frac{dy}{dz} \) Using the chain rule: \[ \frac{dy}{dz} = \frac{dy/dx}{dz/dx} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} \] ### Step 6: Evaluate at \( x = -\frac{1}{3} \) Now we substitute \( x = -\frac{1}{3} \) into our expressions for \( \frac{dy}{dx} \) and \( \frac{dz}{dx} \). 1. Calculate \( z \): \[ z = \sqrt{1 + 3(-\frac{1}{3})} = \sqrt{1 - 1} = 0 \] 2. Calculate \( \frac{dy}{dx} \) at \( x = -\frac{1}{3} \): \[ u = \frac{1}{2(-\frac{1}{3})^2 - 1} = \frac{1}{\frac{2}{9} - 1} = \frac{1}{-\frac{7}{9}} = -\frac{9}{7} \] Now substituting \( u \) into \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -\frac{2(-\frac{1}{3})}{(2(-\frac{1}{3})^2 - 1)^2} \cdot \frac{1}{\left| -\frac{9}{7} \right| \sqrt{\left(-\frac{9}{7}\right)^2 - 1}} \] 3. Calculate \( \frac{dz}{dx} \): \[ \frac{dz}{dx} = \frac{3}{2\sqrt{1 + 3(-\frac{1}{3})}} = \frac{3}{2\sqrt{0}} \text{ (undefined)} \] ### Step 7: Conclusion Since \( z \) becomes \( 0 \), \( \frac{dz}{dx} \) is undefined at \( x = -\frac{1}{3} \). Therefore, \( \frac{dy}{dz} \) also becomes undefined. ### Final Answer The derivative \( \frac{dy}{dz} \) at \( x = -\frac{1}{3} \) is undefined. ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

Derivative of cos^(-1)(2x^2-1) w.r.t. sqrt(1-x^2) when x=1/2 .

Derivative of sec^(-1)((1)/(1-2x^(2))) w.r.t. sin^(-1)(3x-4x^(3)) is

Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).

The differential cofficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is-

Derivative of sec^(2)(tan^(-1)x) w.r.t. x is

The differential coefficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is

Derivative of tan ^(-1) ((a-x)/( 1+ax) ) w.r.t. sin ^(-1) (3x-4x^(3)) is