Home
Class 12
MATHS
the derivation of sec^(-1)"" ((1)/(2x^...

the derivation of ` sec^(-1)"" ((1)/(2x^2-1)) w.r.t sqrt(1-x^2)` at ` x=1//2 ` is

A

2

B

4

C

1

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( z = \sqrt{1 - x^2} \) at \( x = \frac{1}{2} \), we will use the chain rule and implicit differentiation. ### Step-by-Step Solution: 1. **Identify the Functions**: - Let \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) - Let \( z = \sqrt{1 - x^2} \) 2. **Differentiate \( y \) with respect to \( x \)**: - We will use the formula for the derivative of the inverse secant function: \[ \frac{dy}{dx} = \frac{1}{|u| \sqrt{u^2 - 1}} \cdot \frac{du}{dx} \] where \( u = \frac{1}{2x^2 - 1} \). - First, we need to find \( \frac{du}{dx} \): \[ u = \frac{1}{2x^2 - 1} \implies \frac{du}{dx} = -\frac{2x}{(2x^2 - 1)^2} \] - Now, we need to compute \( |u| \) and \( \sqrt{u^2 - 1} \): \[ |u| = \left|\frac{1}{2x^2 - 1}\right|, \quad u^2 = \left(\frac{1}{2x^2 - 1}\right)^2 \] \[ u^2 - 1 = \frac{1 - (2x^2 - 1)^2}{(2x^2 - 1)^2} \] 3. **Substituting into the Derivative**: - Now substitute \( \frac{du}{dx} \) into the derivative formula: \[ \frac{dy}{dx} = \frac{-\frac{2x}{(2x^2 - 1)^2}}{\left|\frac{1}{2x^2 - 1}\right| \sqrt{\frac{1 - (2x^2 - 1)^2}{(2x^2 - 1)^2}}} \] 4. **Differentiate \( z \) with respect to \( x \)**: - We differentiate \( z = \sqrt{1 - x^2} \): \[ \frac{dz}{dx} = \frac{-x}{\sqrt{1 - x^2}} \] 5. **Applying the Chain Rule**: - Now we apply the chain rule to find \( \frac{dy}{dz} \): \[ \frac{dy}{dz} = \frac{dy/dx}{dz/dx} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} \] 6. **Evaluate at \( x = \frac{1}{2} \)**: - Substitute \( x = \frac{1}{2} \) into the derivatives calculated above to find the value of \( \frac{dy}{dz} \). ### Final Calculation: 1. Calculate \( \frac{dy}{dx} \) and \( \frac{dz}{dx} \) at \( x = \frac{1}{2} \). 2. Substitute these values into \( \frac{dy}{dz} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).

Find the derivative of sec^(-1)((1)/(2x^(2)-1))w*r.tsqrt(1-x^(2)) at x=(1)/(2)

Knowledge Check

  • The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=1 , is

    A
    2
    B
    -2
    C
    non-exisent
    D
    none of these
  • Derivatice of sec^(-1)"" { 1 //(2x^2 -1 } w.r.t sqrt""(1+ 3x ) at x=- 1/3 is

    A
    0
    B
    `1//2`
    C
    `1//3`
    D
    None
  • The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=0 , is

    A
    2
    B
    -2
    C
    1
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The derivative of cos ec^(-1)((1)/(2x^(2)-1)) w.r.t.sqrt(1-x^(2)) is equal to

    Derivative of cos^(-1)(2x^2-1) w.r.t. sqrt(1-x^2) when x=1/2 .

    The derivative of sec^(-1)(-1/(2x^(2) -1)) with respect to sqrt(1-x^(2)) " at " x = 1/2 is ……. .

    The differential cofficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is-

    The derivation of sin^(-1)"" x w.r.t cos^(-1) "" sqrt""(1-x^2) is