Home
Class 12
MATHS
If y= tan^(-1) ""[(sqrt(1+x^2)+ sqrt(1-...

If ` y= tan^(-1) ""[(sqrt(1+x^2)+ sqrt(1-x^2))/( sqrt(1+x^2)- sqrt(1-x^2))],` then ` (dy)/(dx)` equals

A

`(1)/(sqrt(1-x^4))`

B

`-(1)/( sqrt(1-x^4))`

C

`(x)/( sqrt(1-x^4))`

D

`-(x)/(sqrt(1-x^4))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = \tan^{-1}\left(\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}}\right), \] we will follow these steps: ### Step 1: Simplify the expression inside the arctangent function Let \[ u = \frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}}. \] ### Step 2: Substitute \( x = \tan(\theta) \) Using the substitution \( x = \tan(\theta) \), we have: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2(\theta)} = \sec(\theta), \] \[ \sqrt{1-x^2} = \sqrt{1-\tan^2(\theta)} = \sqrt{\frac{\cos^2(\theta) - \sin^2(\theta)}{\cos^2(\theta)}} = \frac{\cos(\theta)}{\sqrt{\cos^2(\theta) - \sin^2(\theta)}}. \] ### Step 3: Rewrite \( u \) Now substituting these into \( u \): \[ u = \frac{\sec(\theta) + \sqrt{1-\tan^2(\theta)}}{\sec(\theta) - \sqrt{1-\tan^2(\theta)}}. \] ### Step 4: Simplify \( u \) Using the identities, we can simplify \( u \) further. After simplification, we find that: \[ u = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right). \] ### Step 5: Substitute back to find \( y \) Thus, we have: \[ y = \tan^{-1}\left(\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\right) = \frac{\pi}{4} + \frac{\theta}{2}. \] ### Step 6: Express \( \theta \) in terms of \( x \) From \( x = \tan(\theta) \), we can express \( \theta \) as: \[ \theta = \tan^{-1}(x). \] ### Step 7: Substitute \( \theta \) back into \( y \) Now substituting back: \[ y = \frac{\pi}{4} + \frac{1}{2} \tan^{-1}(x). \] ### Step 8: Differentiate \( y \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 0 + \frac{1}{2} \cdot \frac{1}{1+x^2} \cdot \frac{d}{dx}(x) = \frac{1}{2(1+x^2)}. \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{2(1+x^2)}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))), x^2 le 1 , then find (dy)/(dx)

If y=tan^(-1)(((sqrt(1+x^(2))-sqrt(1-x^(2)))/((sqrt(1+x^(2))+sqrt(1-x^(2)))) find (dy)/(dx)

If e^(y)=(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))," then "(dy)/(dx)=

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

If y=tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))] for 0<|x|<1 ,find (dy)/(dx)

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals

if y=(sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)), then (dy)/(dx) is