Home
Class 12
MATHS
If y= sin^(-1)"" (sqrt"" (1+x)+sqrt"...

If ` y= sin^(-1)"" (sqrt"" (1+x)+sqrt""(1-x))/(2) ` then ` (dy)/(dx) =`

A

`(1)/( sqrt""(1-x^2))`

B

`-(1)/(sqrt(1-x^2))`

C

`-(1)/(2(sqrt(1-x^2))`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) for the given function \[ y = \sin^{-1}\left(\frac{\sqrt{1+x} + \sqrt{1-x}}{2}\right), \] we will follow these steps: ### Step 1: Substitute \(x\) with \(\cos(2\theta)\) Let \(x = \cos(2\theta)\). Then we can express \(\sqrt{1+x}\) and \(\sqrt{1-x}\) in terms of \(\theta\): \[ \sqrt{1+x} = \sqrt{1+\cos(2\theta)} = \sqrt{2\cos^2(\theta)} = \sqrt{2} \cos(\theta), \] \[ \sqrt{1-x} = \sqrt{1-\cos(2\theta)} = \sqrt{2\sin^2(\theta)} = \sqrt{2} \sin(\theta). \] ### Step 2: Substitute into the function Now substitute these expressions back into the function: \[ y = \sin^{-1}\left(\frac{\sqrt{2} \cos(\theta) + \sqrt{2} \sin(\theta)}{2}\right). \] This simplifies to: \[ y = \sin^{-1}\left(\frac{\sqrt{2}}{2}(\cos(\theta) + \sin(\theta))\right). \] ### Step 3: Simplify the expression Recognizing that \(\frac{\sqrt{2}}{2} = \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right)\), we can rewrite the argument of the \(\sin^{-1}\): \[ y = \sin^{-1\left(\sin\left(\frac{\pi}{4} + \theta\right)\right)}. \] Thus, we have: \[ y = \frac{\pi}{4} + \theta. \] ### Step 4: Find \(\theta\) in terms of \(x\) Since \(x = \cos(2\theta)\), we can express \(\theta\) as: \[ \theta = \frac{1}{2} \cos^{-1}(x). \] ### Step 5: Differentiate \(y\) Now we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = 0 + \frac{1}{2} \cdot \frac{d}{dx} \left(\cos^{-1}(x)\right). \] Using the derivative of \(\cos^{-1}(x)\): \[ \frac{d}{dx} \left(\cos^{-1}(x)\right) = -\frac{1}{\sqrt{1-x^2}}, \] we have: \[ \frac{dy}{dx} = \frac{1}{2} \left(-\frac{1}{\sqrt{1-x^2}}\right) = -\frac{1}{2\sqrt{1-x^2}}. \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{1-x^2}}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

If y =sin ^(-1) sqrt((1+x^(2))/( 2) ),then (dy)/(dx) =

If y=sin^(-1){(sqrt(1+x)-sqrt(1-x))/(2)} , find (dy)/(dx).