Home
Class 12
MATHS
If (cos^4 alpha)/(x ) + ( sin^4 alpha)/...

If `(cos^4 alpha)/(x ) + ( sin^4 alpha)/(y) =(1)/(x+y)` then ` (dy)/(dx)=`

A

`xy`

B

`tan^2 alpha`

C

`0`

D

`(x^2 +y^2) sec^2 alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \frac{\cos^4 \alpha}{x} + \frac{\sin^4 \alpha}{y} = \frac{1}{x+y} \] ### Step 1: Multiply both sides by \(x + y\) To eliminate the fraction, we multiply both sides of the equation by \(x + y\): \[ (x + y) \left( \frac{\cos^4 \alpha}{x} + \frac{\sin^4 \alpha}{y} \right) = 1 \] ### Step 2: Distribute \(x + y\) Distributing \(x + y\) across the terms gives: \[ y \cos^4 \alpha + x \sin^4 \alpha = 1 \] ### Step 3: Rearranging the equation We can rearrange the equation to isolate the terms involving \(x\) and \(y\): \[ y \cos^4 \alpha + x \sin^4 \alpha - 1 = 0 \] ### Step 4: Differentiate implicitly Now, we differentiate both sides of the equation with respect to \(x\): \[ \frac{d}{dx}(y \cos^4 \alpha) + \frac{d}{dx}(x \sin^4 \alpha) - \frac{d}{dx}(1) = 0 \] Using the product rule on the first term and the second term: \[ \cos^4 \alpha \frac{dy}{dx} + y \cdot 0 + \sin^4 \alpha + x \cdot 0 = 0 \] This simplifies to: \[ \cos^4 \alpha \frac{dy}{dx} + \sin^4 \alpha = 0 \] ### Step 5: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \cos^4 \alpha \frac{dy}{dx} = -\sin^4 \alpha \] \[ \frac{dy}{dx} = -\frac{\sin^4 \alpha}{\cos^4 \alpha} \] ### Step 6: Simplify the expression Using the identity \(\tan^2 \alpha = \frac{\sin^2 \alpha}{\cos^2 \alpha}\): \[ \frac{dy}{dx} = -\tan^4 \alpha \] ### Final Answer Thus, the final answer is: \[ \frac{dy}{dx} = -\tan^4 \alpha \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If (cos^(4)alpha)/(x)+(sin^(4)alpha)/(y)=(1)/(x+y) then prove that the value of (dy)/(dx) is tan ^(2)alpha

If sin (x+y) +cos (x+y) =1,then (dy)/(dx)=

If (cos^(4)theta)/(x)+(sin^(4)theta)/(y)=(1)/(x+y), (theta " is constan t") then (dy)/(dx)=

If y=cos ^(-1) ((3cos x-4sin x )/( 5) ) ,then (dy)/(dx)=

If y = sin^(-1) (3x -4x^(3)) " then " (dy)/(dx) = ?

If (x) / (a) cos alpha + (y) / (b) sin alpha = 1, (x) / (a) cos beta + (y) / (b) sin beta = 1 and (cos alpha cos beta) / (a ^ (2)) + (without alpha without beta) / (b ^ (2)) = 0 then

If y=sin ^(-1) (4x^(3) -3x) ,then ( dy)/(dx) =

If cos x + cos y + cos alpha = 0 and sin x + sin y + sin alpha = 0 then cot ((x + y) / (2)) =

cos x + cos y + cos alpha = 0 and sin x + sin y + sin alpha = 0 then cot ((x + y) / (2)) is