Home
Class 12
MATHS
if sqrt""(1-x^2)+sqrt""(1-y^2)=alpha (x...

if ` sqrt""(1-x^2)+sqrt""(1-y^2)=alpha (x-y) ,`then` (dy)/(dx)=`

A

`sqrt(((1-y^2)/(1-x^2))`

B

`sqrt(((1-x^2)/(1-y^2))`

C

`sqrt((1-x^2)(1-y^2))`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \sqrt{1 - x^2} + \sqrt{1 - y^2} = \alpha (x - y) \] ### Step 1: Substitute Variables Let's substitute \( x = \sin \theta \) and \( y = \sin \beta \). This gives us: \[ \sqrt{1 - \sin^2 \theta} + \sqrt{1 - \sin^2 \beta} = \alpha (\sin \theta - \sin \beta) \] ### Step 2: Simplify the Left-Hand Side Using the identity \( \sqrt{1 - \sin^2 \theta} = \cos \theta \) and \( \sqrt{1 - \sin^2 \beta} = \cos \beta \), we can rewrite the equation as: \[ \cos \theta + \cos \beta = \alpha (\sin \theta - \sin \beta) \] ### Step 3: Apply the Cosine Addition Formula Recall the cosine addition formula: \[ \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] Applying this to our equation: \[ 2 \cos\left(\frac{\theta + \beta}{2}\right) \cos\left(\frac{\theta - \beta}{2}\right) = \alpha (\sin \theta - \sin \beta) \] Using the sine subtraction formula: \[ \sin A - \sin B = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \] We rewrite the right-hand side: \[ \alpha \cdot 2 \cos\left(\frac{\theta + \beta}{2}\right) \sin\left(\frac{\theta - \beta}{2}\right) \] ### Step 4: Equate Both Sides Now we have: \[ 2 \cos\left(\frac{\theta + \beta}{2}\right) \cos\left(\frac{\theta - \beta}{2}\right) = \alpha \cdot 2 \cos\left(\frac{\theta + \beta}{2}\right) \sin\left(\frac{\theta - \beta}{2}\right) \] Dividing both sides by \( 2 \cos\left(\frac{\theta + \beta}{2}\right) \) (assuming it is not zero): \[ \cos\left(\frac{\theta - \beta}{2}\right) = \alpha \sin\left(\frac{\theta - \beta}{2}\right) \] ### Step 5: Solve for \( \theta - \beta \) Rearranging gives us: \[ \cot\left(\frac{\theta - \beta}{2}\right) = \alpha \] Thus, we can express: \[ \frac{\theta - \beta}{2} = \cot^{-1}(\alpha) \] ### Step 6: Substitute Back Substituting back for \( \theta \) and \( \beta \): \[ \frac{\sin^{-1}(x) - \sin^{-1}(y)}{2} = \cot^{-1}(\alpha) \] ### Step 7: Differentiate Both Sides Now we differentiate both sides with respect to \( x \): \[ \frac{1}{2} \left( \frac{1}{\sqrt{1 - x^2}} \cdot \frac{dx}{dx} - \frac{1}{\sqrt{1 - y^2}} \cdot \frac{dy}{dx} \right) = 0 \] ### Step 8: Solve for \( \frac{dy}{dx} \) Rearranging gives: \[ \frac{1}{\sqrt{1 - y^2}} \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \] Thus, we can express \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}} \] ### Final Answer \[ \frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1. Prove that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1 show that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

If x=sqrt(1-y^2) , then (dy)/(dx)=

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))