Home
Class 12
MATHS
If sqrt(x+y) + sqrt(y-x) = lamda then ...

If ` sqrt(x+y) + sqrt(y-x) = lamda ` then ` (d^2 y)/(dx^2) ` equals

A

`(-2)/(lamda^2)`

B

`(2)/(lamda^2)`

C

`(2)/(lamda)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we need to find the second derivative of \( y \) with respect to \( x \) given the equation: \[ \sqrt{x+y} + \sqrt{y-x} = \lambda \] ### Step 1: Isolate one of the square roots First, we can isolate one of the square roots. Let's isolate \( \sqrt{x+y} \): \[ \sqrt{x+y} = \lambda - \sqrt{y-x} \] ### Step 2: Square both sides Next, we square both sides to eliminate the square root: \[ x+y = (\lambda - \sqrt{y-x})^2 \] Expanding the right-hand side: \[ x+y = \lambda^2 - 2\lambda\sqrt{y-x} + (y-x) \] ### Step 3: Simplify the equation Now, we can simplify the equation: \[ x + y = \lambda^2 - 2\lambda\sqrt{y-x} + y - x \] Rearranging gives: \[ 2x = \lambda^2 - 2\lambda\sqrt{y-x} \] ### Step 4: Isolate the square root again Now, isolate the square root term: \[ 2\lambda\sqrt{y-x} = \lambda^2 - 2x \] Dividing both sides by \( 2\lambda \): \[ \sqrt{y-x} = \frac{\lambda^2 - 2x}{2\lambda} \] ### Step 5: Square both sides again Square both sides again to eliminate the square root: \[ y - x = \left(\frac{\lambda^2 - 2x}{2\lambda}\right)^2 \] ### Step 6: Expand and rearrange Expanding the right-hand side gives: \[ y - x = \frac{(\lambda^2 - 2x)^2}{4\lambda^2} \] Rearranging gives: \[ y = x + \frac{(\lambda^2 - 2x)^2}{4\lambda^2} \] ### Step 7: Differentiate with respect to \( x \) Now we differentiate both sides with respect to \( x \): \[ \frac{dy}{dx} = 1 + \frac{1}{4\lambda^2} \cdot 2(\lambda^2 - 2x)(-2) \] Simplifying gives: \[ \frac{dy}{dx} = 1 - \frac{(\lambda^2 - 2x)}{2\lambda^2} \] ### Step 8: Differentiate again to find the second derivative Now we differentiate \( \frac{dy}{dx} \) again to find \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = 0 + \frac{1}{2\lambda^2} \cdot 2 = \frac{1}{\lambda^2} \] ### Final Result Thus, the second derivative \( \frac{d^2y}{dx^2} \) is: \[ \frac{d^2y}{dx^2} = \frac{2}{\lambda^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If sqrt (x + y ) - sqrt (y -x) =c, then (d ^(2)y )/( dx ^(2)) equals

If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

If sqrt(x+y)+sqrt(y-x)=2 , then the value of (d^(2)y)/(dx^(2)) is equal to

sqrt(x+y)+sqrt(y-x)=c,then(d^(2)y)/(dx^(2)) equals

If y =sqrt(x) + (1)/(sqrt(x)) , "then" 2 x . (dy)/(dx) is equal to

If sqrt(y-x)+sqrt(y+x)=1" then "(d^(3)y)/(dx^(3)) at x=1 is equal to

x sqrt(x)+y sqrt(y)=a sqrt(a) then find (dy)/(dx)