Home
Class 12
MATHS
If y= sin^n x cos nx then (dy)/(dx)...

If `y= sin^n x cos nx ` then `(dy)/(dx)=`

A

`n sin^(n-1) x cos (n+1) x`

B

`n sin^(n-1) x sin (n+1) x`

C

`n sin^(n-1) x cos (n-1) x`

D

`n sin^(n-1) x cos nx `

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin^n x \cos(nx) \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u \) and \( v \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = u'v + uv' \] where \( u' \) is the derivative of \( u \) and \( v' \) is the derivative of \( v \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = \sin^n x \) - \( v = \cos(nx) \) ### Step 2: Differentiate \( u \) and \( v \) 1. **Differentiate \( u \)**: - Using the chain rule, we have: \[ u' = n \sin^{n-1} x \cdot \cos x \] 2. **Differentiate \( v \)**: - Using the chain rule, we have: \[ v' = -\sin(nx) \cdot n \] ### Step 3: Apply the product rule Now we can substitute \( u \), \( u' \), \( v \), and \( v' \) into the product rule formula: \[ \frac{dy}{dx} = u'v + uv' \] Substituting the values: \[ \frac{dy}{dx} = (n \sin^{n-1} x \cos x) \cdot (\cos(nx)) + (\sin^n x) \cdot (-n \sin(nx)) \] ### Step 4: Simplify the expression Now, let's simplify the expression: \[ \frac{dy}{dx} = n \sin^{n-1} x \cos x \cos(nx) - n \sin^n x \sin(nx) \] ### Step 5: Factor out common terms We can factor out \( n \) and \( \sin^{n-1} x \): \[ \frac{dy}{dx} = n \sin^{n-1} x \left( \cos x \cos(nx) - \sin x \sin(nx) \right) \] ### Step 6: Use the cosine addition formula Using the cosine addition formula \( \cos(a + b) = \cos a \cos b - \sin a \sin b \): \[ \cos x \cos(nx) - \sin x \sin(nx) = \cos(x + nx) = \cos((n + 1)x) \] ### Final Result Thus, we can write: \[ \frac{dy}{dx} = n \sin^{n-1} x \cos((n + 1)x) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=log (sin x +cos x ) ,then (dy)/(dx)

If y= sin (cos (tan x)) ,then (dy)/(dx) =

If y=(sin x)/(x+cos x) , then find (dy)/(dx) .

If y=sin x+cos x then (dy)/(dx) =

if sin y+e^(x cos y)=e then (dy)/(dx)

If y= (sinx -cos x )^((sin x +cos x ) ),then (dy)/(dx)=

If y = sin (x + a ) / cos x then find (dy)/(dx)

if y=(sin x)^(cos x). Then (dy)/(dx)=