Home
Class 12
MATHS
the derivation of tan^(-1) "" ((sqrt(1...

the derivation of ` tan^(-1) "" ((sqrt(1+x^2)-1)/(x))` with respect to ` tan^(-1) "" ((2x sqrt(1-x^2))/(1-2x^2))` at x=0 ,is

A

`1//8`

B

`1//4`

C

`1//2`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \) with respect to \( z = \tan^{-1} \left( \frac{2x \sqrt{1-x^2}}{1-2x^2} \right) \) at \( x = 0 \), we will follow these steps: ### Step 1: Differentiate \( y \) with respect to \( x \) Let: \[ y = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \] Using the chain rule: \[ \frac{dy}{dx} = \frac{1}{1 + \left( \frac{\sqrt{1+x^2}-1}{x} \right)^2} \cdot \frac{d}{dx} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \] ### Step 2: Differentiate \( z \) with respect to \( x \) Let: \[ z = \tan^{-1} \left( \frac{2x \sqrt{1-x^2}}{1-2x^2} \right) \] Using the chain rule: \[ \frac{dz}{dx} = \frac{1}{1 + \left( \frac{2x \sqrt{1-x^2}}{1-2x^2} \right)^2} \cdot \frac{d}{dx} \left( \frac{2x \sqrt{1-x^2}}{1-2x^2} \right) \] ### Step 3: Apply the formula for derivatives of inverse functions We need to find \( \frac{dy}{dz} \): \[ \frac{dy}{dz} = \frac{dy/dx}{dz/dx} \] ### Step 4: Evaluate at \( x = 0 \) 1. **Evaluate \( y \) at \( x = 0 \)**: \[ y = \tan^{-1} \left( \frac{\sqrt{1+0^2}-1}{0} \right) = \tan^{-1}(0) = 0 \] 2. **Evaluate \( z \) at \( x = 0 \)**: \[ z = \tan^{-1} \left( \frac{2 \cdot 0 \cdot \sqrt{1-0^2}}{1-2 \cdot 0^2} \right) = \tan^{-1}(0) = 0 \] 3. **Evaluate \( \frac{dy}{dx} \) at \( x = 0 \)**: \[ \frac{dy}{dx} = \frac{1}{1 + \left( \frac{\sqrt{1+0^2}-1}{0} \right)^2} \cdot \text{(Evaluate the derivative)} \] This requires careful evaluation of the limit as \( x \to 0 \). 4. **Evaluate \( \frac{dz}{dx} \) at \( x = 0 \)**: \[ \frac{dz}{dx} = \frac{1}{1 + \left( \frac{2 \cdot 0 \cdot \sqrt{1-0^2}}{1-2 \cdot 0^2} \right)^2} \cdot \text{(Evaluate the derivative)} \] Similar to \( y \), this requires evaluating the limit. ### Step 5: Final Calculation Finally, substitute the values of \( \frac{dy}{dx} \) and \( \frac{dz}{dx} \) into \( \frac{dy}{dz} \) and evaluate at \( x = 0 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2))) at x=0 is (1)/(8)(b)(1)/(4)(c)(1)/(2)(d)1

Differentiate tan^(-1)((sqrt(1+x^(2)-1))/(x)) with respect to tan^(-1)x,x!=0

Knowledge Check

  • The derivative of tan^(-1)""(sqrt(1+x^(2)-1))/(x) with respect to tan^(-1)2x(sqrt(1-x^(2)))/(1-2x^(2)) at x=0 is

    A
    `1//8`
    B
    `1//4`
    C
    `1//2`
    D
    1
  • Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((2x sqrt(1-x^(2)))/( 1-2x ^(2))) is

    A
    ` (-sqrt( 1-x^(2)))/( 4( 1+x^(2)))`
    B
    ` (sqrt( 1-x^(2)))/( 4( 1+x^(2)))`
    C
    ` (-sqrt( 1-x^(2)))/(1+x^(2))`
    D
    ` ( sqrt( 1-x^(2)))/( 1+x^(2))`
  • The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2))) at x = 0 is

    A
    `1//4`
    B
    `1//8`
    C
    `1//2`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) writ.tan^(-1)x is

    Differentiate tan^(-1)((sqrt(1+x^(2)-1))/(x)) with respect to tan^(-1)x, when x!=0

    Differentiate tan^(-1)((sqrt(1+x^(2))+1)/(x))" w.r.t. "tan^(-1)((2xsqrt(1-x^(2)))/(1-2x^(2))) at x = 0.

    Derivative of tan^(-1)((x)/(sqrt( 1 - x^(2)))) with respect to sin^(-1) (3x - 4x^(3)) is

    If: tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4 then : x =