Home
Class 12
MATHS
If y= tan^(-1) "" ((log(e //x^2))/( log...

If ` y= tan^(-1) "" ((log(e //x^2))/( log (ex^2)))+ tan^(-1) "" ((3+2 log x)/(1-6 log x))` then ` (d^2 y)/(dx^2)` is

A

2

B

1

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given function twice. Let's break down the solution step by step. ### Step 1: Rewrite the function Given: \[ y = \tan^{-1} \left( \frac{\log(e/x^2)}{\log(ex^2)} \right) + \tan^{-1} \left( \frac{3 + 2 \log x}{1 - 6 \log x} \right) \] Using the properties of logarithms, we can rewrite the logarithmic expressions: 1. \(\log(e/x^2) = \log e - \log(x^2) = 1 - 2\log x\) 2. \(\log(ex^2) = \log e + \log(x^2) = 1 + 2\log x\) Thus, we can rewrite \(y\) as: \[ y = \tan^{-1} \left( \frac{1 - 2\log x}{1 + 2\log x} \right) + \tan^{-1} \left( \frac{3 + 2\log x}{1 - 6\log x} \right) \] ### Step 2: Differentiate \(y\) with respect to \(x\) To find \(\frac{dy}{dx}\), we will use the derivative of the arctangent function: \[ \frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] #### For the first term: Let \(u_1 = \frac{1 - 2\log x}{1 + 2\log x}\). Using the quotient rule: \[ \frac{du_1}{dx} = \frac{(1 + 2\log x)(-2/x) - (1 - 2\log x)(2/x)}{(1 + 2\log x)^2} \] Simplifying: \[ \frac{du_1}{dx} = \frac{-2(1 + 2\log x) + 2(1 - 2\log x)}{x(1 + 2\log x)^2} = \frac{-4\log x}{x(1 + 2\log x)^2} \] So, \[ \frac{dy_1}{dx} = \frac{1}{1 + u_1^2} \cdot \frac{du_1}{dx} \] #### For the second term: Let \(u_2 = \frac{3 + 2\log x}{1 - 6\log x}\). Using the quotient rule: \[ \frac{du_2}{dx} = \frac{(1 - 6\log x)(2/x) - (3 + 2\log x)(-6/x)}{(1 - 6\log x)^2} \] Simplifying: \[ \frac{du_2}{dx} = \frac{(2 - 12\log x + 18 + 12\log x)}{x(1 - 6\log x)^2} = \frac{20}{x(1 - 6\log x)^2} \] So, \[ \frac{dy_2}{dx} = \frac{1}{1 + u_2^2} \cdot \frac{du_2}{dx} \] ### Step 3: Combine the derivatives Now, we combine the derivatives: \[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx} \] ### Step 4: Differentiate again to find \(\frac{d^2y}{dx^2}\) To find the second derivative, we differentiate \(\frac{dy}{dx}\) again using the product and chain rules. ### Final Result The final expression for \(\frac{d^2y}{dx^2}\) will involve substituting the expressions for \(\frac{dy_1}{dx}\) and \(\frac{dy_2}{dx}\) and applying the differentiation rules accordingly.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((log((e)/(x^(2))))/(log(ex^(2))))+tan^(-1)((3+2log x)/(1-6log x)) then (d^(2)y)/(dx^(2)) is (a) 2(b)1(c)0(d)-1

f(x)=tan^(-1){(log((e)/(x^(2))))/(log(ex^(2)))}+tan^(-1)((3+2log x)/(1-6log x)) then find (d^(n)y)/(dx^(n))

If y=tan^(-1){((log)_(e)(e/x^(2)))/((log_(e)(ex^(2)))}+tan^(-1)((3+2(log)_(e)x)/(1-6(log)_(e)x)), then (d^(2)y)/(dx^(2))=(a)2(b)1(c)0(d)-1

If quad y=tan^(-1){(log_(e)((e)/(x^(2))))/(log_(e)(ex^(2)))}+tan^(-1)((3+2log_(e)x)/(1-6log_(e)x)), then (d^(2)y)/(dx^(2))=

If y=tan ^(-1) ((log (ex))/( log ((e)/( x)))) ,then (dy)/(dx) =

If y = tan ^ (- 1) [(1-2log x) / (1 + 2log x)] + tan ^ (- 1) [(3 + 2log x) / (1-6log x)]

If y=tan^(-1)[(log(e//x^(3)))/(log(ex^(3)))]+tan^(-1)[(log(e^(4)x^(3)))/(log(e//x^(12)))]," then "(d^(2)y)/(dx^(2))=

If y=tan^(-1)[(logex)/(log (e/x))] + tan^(-1)[(8-logx)/(1+8 logx)] , then (d^(2)y)/(dx^(2)) is