Home
Class 12
MATHS
If f(x) = cot^(-1) "" ((x^x - x^(-x))/...

If ` f(x) = cot^(-1) "" ((x^x - x^(-x))/(2)) ` then ` f'(1)` equals

A

`-1`

B

`1`

C

`log 2`

D

`- log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(1) \) for the function \( f(x) = \cot^{-1} \left( \frac{x^x - x^{-x}}{2} \right) \), we will follow these steps: ### Step 1: Differentiate \( f(x) \) Using the chain rule, we know that the derivative of \( \cot^{-1}(u) \) is given by: \[ f'(x) = -\frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{x^x - x^{-x}}{2} \). ### Step 2: Find \( \frac{du}{dx} \) First, we need to differentiate \( u \): \[ u = \frac{x^x - x^{-x}}{2} \] To differentiate \( u \), we apply the quotient rule. The derivative of \( x^x \) is: \[ \frac{d}{dx}(x^x) = x^x (1 + \log x) \] And the derivative of \( x^{-x} \) is: \[ \frac{d}{dx}(x^{-x}) = -x^{-x} (1 + \log x) \] Thus, we have: \[ \frac{du}{dx} = \frac{1}{2} \left( x^x (1 + \log x) + x^{-x} (1 + \log x) \right) \] ### Step 3: Substitute \( u \) and \( \frac{du}{dx} \) into \( f'(x) \) Now substituting \( u \) and \( \frac{du}{dx} \) into the derivative formula, we get: \[ f'(x) = -\frac{1}{1 + \left( \frac{x^x - x^{-x}}{2} \right)^2} \cdot \frac{1}{2} \left( x^x (1 + \log x) + x^{-x} (1 + \log x) \right) \] ### Step 4: Evaluate \( f'(1) \) Now we need to evaluate \( f'(1) \): 1. Calculate \( u \) at \( x = 1 \): \[ u(1) = \frac{1^1 - 1^{-1}}{2} = \frac{1 - 1}{2} = 0 \] 2. Calculate \( \frac{du}{dx} \) at \( x = 1 \): \[ \frac{du}{dx} \bigg|_{x=1} = \frac{1}{2} \left( 1^1 (1 + \log 1) + 1^{-1} (1 + \log 1) \right) = \frac{1}{2} \left( 1(1 + 0) + 1(1 + 0) \right) = \frac{1}{2} (1 + 1) = 1 \] 3. Substitute \( u(1) \) and \( \frac{du}{dx} \) into \( f'(1) \): \[ f'(1) = -\frac{1}{1 + 0^2} \cdot \frac{1}{2} \cdot 1 = -\frac{1}{1} \cdot \frac{1}{2} = -\frac{1}{2} \] ### Final Answer Thus, \( f'(1) = -\frac{1}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x-1)/(x+1) , then f(2) is equal to

Let f(x)=(x-1)/(x+1) then f(1) is equal to

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x+3)=x^(2)-1, then f(x) is equal to

If f(x)=(x+2)/(x-1) then f(y) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to