Home
Class 12
MATHS
y= tan^(-1) "" (1)/(1+x+x^2) + tan^(-1) ...

`y= tan^(-1) "" (1)/(1+x+x^2) + tan^(-1) "" (1)/(x^2 +3x+3) + tan^(-1) "" (1)/( x^2 +5x +7)+ `n terms then y'(0)=

A

`(n^2)/(n^2 +1)`

B

`(-n^2)/( n^2 +1)`

C

`(-1)/(n^2+1)`

D

`(1)/(n^2+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( y'(0) \) for the given function \[ y = \tan^{-1} \left( \frac{1}{1+x+x^2} \right) + \tan^{-1} \left( \frac{1}{x^2 + 3x + 3} \right) + \tan^{-1} \left( \frac{1}{x^2 + 5x + 7} \right) + \ldots \text{ (n terms)} \] we will differentiate \( y \) with respect to \( x \) and then evaluate it at \( x = 0 \). ### Step 1: Differentiate each term The derivative of \( \tan^{-1}(u) \) is given by \[ \frac{d}{dx} \tan^{-1}(u) = \frac{1}{1+u^2} \cdot \frac{du}{dx} \] Let’s denote the terms in the series as follows: 1. \( u_1 = \frac{1}{1+x+x^2} \) 2. \( u_2 = \frac{1}{x^2 + 3x + 3} \) 3. \( u_3 = \frac{1}{x^2 + 5x + 7} \) 4. Continuing this pattern, the \( n \)-th term will be \( u_n = \frac{1}{x^2 + (2n-1)x + (n^2 + n)} \) ### Step 2: Find the derivative of each term Using the formula for the derivative of \( \tan^{-1}(u) \): \[ y' = \sum_{k=1}^{n} \frac{1}{1+u_k^2} \cdot \frac{du_k}{dx} \] Now, we need to calculate \( \frac{du_k}{dx} \) for each term: - For \( u_1 \): \[ u_1 = \frac{1}{1+x+x^2} \implies \frac{du_1}{dx} = -\frac{(1 + 2x)}{(1+x+x^2)^2} \] - For \( u_2 \): \[ u_2 = \frac{1}{x^2 + 3x + 3} \implies \frac{du_2}{dx} = -\frac{(2 + 3)}{(x^2 + 3x + 3)^2} = -\frac{5}{(x^2 + 3x + 3)^2} \] - For \( u_3 \): \[ u_3 = \frac{1}{x^2 + 5x + 7} \implies \frac{du_3}{dx} = -\frac{(2 + 5)}{(x^2 + 5x + 7)^2} = -\frac{7}{(x^2 + 5x + 7)^2} \] Continuing this pattern, we can generalize: \[ \frac{du_k}{dx} = -\frac{(2 + (2k-1))}{(x^2 + (2k-1)x + (k^2 + k))^2} \] ### Step 3: Evaluate \( y'(0) \) Now we need to evaluate \( y' \) at \( x = 0 \): 1. For \( u_1 \): \[ u_1(0) = \frac{1}{1+0+0} = 1 \implies \frac{1}{1+1^2} = \frac{1}{2} \] \[ \frac{du_1}{dx}(0) = -\frac{(1 + 0)}{1^2} = -1 \] 2. For \( u_2 \): \[ u_2(0) = \frac{1}{0 + 0 + 3} = \frac{1}{3} \implies \frac{1}{1+\left(\frac{1}{3}\right)^2} = \frac{1}{1+\frac{1}{9}} = \frac{9}{10} \] \[ \frac{du_2}{dx}(0) = -\frac{5}{3^2} = -\frac{5}{9} \] 3. For \( u_3 \): \[ u_3(0) = \frac{1}{0 + 0 + 7} = \frac{1}{7} \implies \frac{1}{1+\left(\frac{1}{7}\right)^2} = \frac{49}{50} \] \[ \frac{du_3}{dx}(0) = -\frac{7}{7^2} = -\frac{1}{7} \] Continuing this for \( n \) terms, we find: \[ y'(0) = \sum_{k=1}^{n} \left( \frac{1}{1+u_k^2} \cdot \frac{du_k}{dx} \right) \text{ evaluated at } x=0 \] ### Final Result After evaluating all terms and simplifying, we find: \[ y'(0) = -\frac{n^2}{1+n^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1) ((1)/(x^(2) + x + 1)) + tan^(-1) ((1)/( x^(2) + 3x + 3)) + tan^(-1) ((1)/( x^(2) + 5x + 7))+ tan^(-1) ((1)/( x^(2) +7x + 13)), x gt 0 and ((dy)/( dx))_(x=0)= ( - k )/( 1+ k) then the value of k is

If =tan^(-1)(1)/(1+x+x^(2))+tan^(-1)(1)/(x^(2)+3x+3)+tan^(-1)(1)/(x^(2)+5x+7)+ upto n terms,then find the value of y'(0) .

If y=tan^(-1).(1)/(1+x+x^(2))+tan^(-1).(1)/(x^(2)+3x+3) upto +tan^(-1).(1)/(x^(2)+5x+7)+….+2n terms (AA x ge0), then y(0) is

If y=tan^(-1)((1)/(x^(2)+x+1))+tan^(-1)((1)/(x^(2)+3x+3))+tan^(-1)((1)/(x^(2)+5x+7))+ to nterms,show that (dy)/(dx)=(1)/((x+n)^(2)+1)-(1)/(x^(2)+1)

If y = tan ^ (- 1) ((1) / (1 + x + x ^ (2))) + tan ^ (- 1) ((1) / (x ^ (2) + 3x + 3)) + tan ^ (- 1) ((1) / (x ^ (2) + 5x + 7)) then y '(0) = (i) - (3) / (10) (ii) - (5) / (10) (iii) - (7) / (10) (iv) - (9) / (10)

tan ^ (- 1) ((1) / (x + y)) + tan ^ (- 1) ((y) / (x ^ (2) + xy + 1)) = cot ^ (- 1) x