Home
Class 12
MATHS
If y=sum(n=1)^(x) tan^(-1) "" (1)/(1+n...

If ` y=sum_(n=1)^(x) tan^(-1) "" (1)/(1+n+n^2)`, then ` (dy)/(dx)`=

A

`(1)/(1+x^2)`

B

`(1)/(1+(1+x)^2)`

C

0

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given function: Given: \[ y = \sum_{n=1}^{x} \tan^{-1} \left( \frac{1}{1+n+n^2} \right) \] ### Step 1: Simplify the Argument of the Arctangent First, we simplify the term inside the summation: \[ 1 + n + n^2 = n^2 + n + 1 \] We can rewrite the term: \[ \tan^{-1} \left( \frac{1}{1+n+n^2} \right) = \tan^{-1} \left( \frac{1}{n^2+n+1} \right) \] ### Step 2: Use the Formula for the Difference of Arctangents We can use the identity for the difference of arctangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1} \left( \frac{a-b}{1+ab} \right) \] This means we can express the sum as: \[ y = \sum_{n=1}^{x} \left( \tan^{-1}(n+1) - \tan^{-1}(n) \right) \] ### Step 3: Write Out the Terms Now, let's write out the terms of the summation: - For \( n = 1 \): \( \tan^{-1}(2) - \tan^{-1}(1) \) - For \( n = 2 \): \( \tan^{-1}(3) - \tan^{-1}(2) \) - For \( n = 3 \): \( \tan^{-1}(4) - \tan^{-1}(3) \) - ... - For \( n = x \): \( \tan^{-1}(x+1) - \tan^{-1}(x) \) ### Step 4: Observe the Cancellation Notice that this is a telescoping series: \[ y = \tan^{-1}(x+1) - \tan^{-1}(1) \] ### Step 5: Differentiate \( y \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \tan^{-1}(x+1) - \tan^{-1}(1) \right) \] Since \( \tan^{-1}(1) \) is a constant, its derivative is 0. Thus, we only need to differentiate \( \tan^{-1}(x+1) \): \[ \frac{dy}{dx} = \frac{1}{1+(x+1)^2} \cdot \frac{d}{dx}(x+1) = \frac{1}{1+(x+1)^2} \cdot 1 \] This simplifies to: \[ \frac{dy}{dx} = \frac{1}{1+(x+1)^2} \] ### Step 6: Final Result Thus, the final result for the derivative is: \[ \frac{dy}{dx} = \frac{1}{1 + (x+1)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to

sum_(n=1)^(n)tan^(-1)((n)/(n))

if x^(m)*y^(n)=1 then (dy)/(dx)

If x_(0)=sum_(n=1)^(oo)tan^(-1)((4n)/(n^(4)-2n^(2)+3)), then which of the following is/are correct

if y=log((1+x)/(1-x))^((1)/(4))-(1)/(2)tan^(-1)x, th e n (dy)/(dx)

If y=tan n^(-1) ((sqrtx(3-x))/( 1-3x) ) ,then (dy)/(dx) =

sum_(n=1)^(oo)tan^(-1)((8)/(4n^(2)-4n+1)) is equal to

The sum sum_(n=1)^(oo)tan^(-1)((3)/(n^(2)+n-1)) is equal to