Home
Class 12
MATHS
If y=(1 +x)^n then the value of (y0)...

If y=`(1 +x)^n ` then the value of `(y_0)+(y_1)_0 +((y_2)_0)/(2!) +((y_3)_0)/(3!) +. .. ((y_n)_0)/(n!)` is

A

`2^n`

B

`2^(n-1)`

C

`n`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given function: **Step 1: Identify the function** Let \( y = (1 + x)^n \). **Step 2: Calculate \( y_0 \)** To find \( y_0 \), we substitute \( x = 0 \): \[ y_0 = (1 + 0)^n = 1^n = 1. \] **Step 3: Calculate \( y_1 \)** Now, we need to find the first derivative \( y' \) and evaluate it at \( x = 0 \): \[ y' = \frac{d}{dx}[(1 + x)^n] = n(1 + x)^{n-1}. \] Evaluating at \( x = 0 \): \[ y_1 = y'(0) = n(1 + 0)^{n-1} = n. \] **Step 4: Calculate \( y_2 \)** Next, we find the second derivative \( y'' \) and evaluate it at \( x = 0 \): \[ y'' = \frac{d^2}{dx^2}[(1 + x)^n] = n(n-1)(1 + x)^{n-2}. \] Evaluating at \( x = 0 \): \[ y_2 = y''(0) = n(n-1)(1 + 0)^{n-2} = n(n-1). \] **Step 5: Calculate \( y_3 \)** Now, we find the third derivative \( y''' \) and evaluate it at \( x = 0 \): \[ y''' = \frac{d^3}{dx^3}[(1 + x)^n] = n(n-1)(n-2)(1 + x)^{n-3}. \] Evaluating at \( x = 0 \): \[ y_3 = y'''(0) = n(n-1)(n-2)(1 + 0)^{n-3} = n(n-1)(n-2). \] **Step 6: Generalize \( y_k \)** From the pattern observed, we can generalize: \[ y_k = n(n-1)(n-2)\cdots(n-k+1) = \frac{n!}{(n-k)!}. \] **Step 7: Formulate the series** Now we can write the series: \[ S = y_0 + \frac{y_1}{1!} + \frac{y_2}{2!} + \frac{y_3}{3!} + \cdots + \frac{y_n}{n!}. \] Substituting the values we found: \[ S = 1 + \frac{n}{1!} + \frac{n(n-1)}{2!} + \frac{n(n-1)(n-2)}{3!} + \cdots + \frac{n!}{n!}. \] **Step 8: Recognize the binomial expansion** This series represents the expansion of \( (1 + 1)^n \): \[ S = (1 + 1)^n = 2^n. \] **Final Result:** Thus, the value of the series is: \[ \boxed{2^n}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If (2)/(3) x = 0.6 and 0.02 y =1, then the value of x + y ^(-1) is

If (2)/(3) x = 0.6 and 0.02 y =1 , then the value of x +y^(-1) is

If (x_(0), y_(0), z_(0)) is any solution of the system of equations 2x-y-z=1, -x-y+2z=1 and x-2y+z=2 , then the value of (x_(0)^(2)-y_(0)^(2)+1)/(z_(0)) (where, z_(0) ne 0 ) is

The value of y(log4) if y_(2)-7y_(1)+12y=0,y(0)=2,y_(1)(0)=7 is

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

(3) / (x) - (1) / (y) + 9 = 0 (2) / (x) + (3) / (y) = 5, (! = 0, y! = 0)

( 1 ) /(x) + (1 ) /( y) = 7 , ( 2)/(x) + ( 3) /( y) = 17 (x ne 0, y ne 0 ) .

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)