Home
Class 12
MATHS
If f(x) = x^n then the value of f(...

If ` f(x) = x^n ` then the value of ` f(1) +(f '(1) )/(1!) +(f'' (1))/(2!) +(f' ' ' (1))/( 3!) + . . . + (f ^n (1))/( n!)` is

A

n

B

`(n(n+1))/(2)`

C

`2^n `

D

`2^(2n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ f(1) + \frac{f'(1)}{1!} + \frac{f''(1)}{2!} + \frac{f'''(1)}{3!} + \ldots + \frac{f^{(n)}(1)}{n!} \] where \( f(x) = x^n \). ### Step 1: Calculate \( f(1) \) We start by evaluating \( f(1) \): \[ f(1) = 1^n = 1 \] ### Step 2: Calculate \( f'(x) \) and \( f'(1) \) Next, we differentiate \( f(x) \): \[ f'(x) = nx^{n-1} \] Now, we evaluate \( f'(1) \): \[ f'(1) = n \cdot 1^{n-1} = n \] ### Step 3: Calculate \( f''(x) \) and \( f''(1) \) Now, we differentiate \( f'(x) \): \[ f''(x) = n(n-1)x^{n-2} \] Evaluating \( f''(1) \): \[ f''(1) = n(n-1) \cdot 1^{n-2} = n(n-1) \] ### Step 4: Calculate \( f'''(x) \) and \( f'''(1) \) Next, we differentiate \( f''(x) \): \[ f'''(x) = n(n-1)(n-2)x^{n-3} \] Evaluating \( f'''(1) \): \[ f'''(1) = n(n-1)(n-2) \cdot 1^{n-3} = n(n-1)(n-2) \] ### Step 5: Generalize \( f^{(k)}(x) \) Continuing this process, we can see a pattern emerging. The \( k \)-th derivative of \( f(x) \) is: \[ f^{(k)}(x) = n(n-1)(n-2)\cdots(n-k+1)x^{n-k} \] Evaluating at \( x = 1 \): \[ f^{(k)}(1) = n(n-1)(n-2)\cdots(n-k+1) \] ### Step 6: Write the expression Now we can write the entire expression: \[ 1 + \frac{n}{1!} + \frac{n(n-1)}{2!} + \frac{n(n-1)(n-2)}{3!} + \ldots + \frac{n(n-1)(n-2)\cdots(n-n)}{n!} \] The last term \( \frac{n(n-1)(n-2)\cdots(n-n)}{n!} \) simplifies to \( \frac{n!}{n!} = 1 \). ### Step 7: Recognize the series as a binomial expansion The expression can be recognized as the expansion of \( (1 + 1)^n \): \[ 1 + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n} = 2^n \] ### Conclusion Thus, the value of the original expression is: \[ \boxed{2^n} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

if f(x)=x^(n) then the value of f(1)-(f'(1))/(1!)+(f''(1))/(2!)+--+((-1)^(n)f^(prime--n)xx(1))/(n!)

If f(x)=x^(n),"n" epsilon N , then the value of f(1)-(f^(')(1))/(1!)+(f^(")(1))/(2!)-(f^''')(1)/(3!)+…+(-1)^(n)(f^(n)(1))/(n!) is

If   f(x ) = n/( n+1) , then find the value of f(n) + 1/f(n)

If f : R to R is given f (x) = x +1, then the value of lim _( b - oo) (1)/(n) [ f (0) + f ((5)/(n)) + f ((10)/(n)) +...+ f ((5 ( n -1))/( n )) ], is :

If f(x)=(1-x)^(n) , then the value of f(0)+f'(0)+(f''(0))/(2!)+...+(f^(n)(0))/(n!) , is