Home
Class 12
MATHS
If f(x) = sqrt(x^2 - 4x +4) on the in...

If ` f(x) = sqrt(x^2 - 4x +4)` on the interval [0.3] then ` f' (2 +) = . . .. . And f '(2-) =…..`

Text Solution

AI Generated Solution

The correct Answer is:
To find the right-hand derivative \( f'(2^+) \) and the left-hand derivative \( f'(2^-) \) of the function \( f(x) = \sqrt{x^2 - 4x + 4} \), we will follow these steps: ### Step 1: Simplify the Function First, we simplify the function \( f(x) \). \[ f(x) = \sqrt{x^2 - 4x + 4} \] We can factor the expression inside the square root: \[ x^2 - 4x + 4 = (x - 2)^2 \] Thus, we have: \[ f(x) = \sqrt{(x - 2)^2} \] This simplifies to: \[ f(x) = |x - 2| \] ### Step 2: Determine the Right-Hand Derivative \( f'(2^+) \) The right-hand derivative at \( x = 2 \) is calculated using the limit definition: \[ f'(2^+) = \lim_{h \to 0^+} \frac{f(2 + h) - f(2)}{h} \] Substituting \( f(x) \): \[ f(2 + h) = |(2 + h) - 2| = |h| = h \quad (\text{since } h > 0) \] And we know: \[ f(2) = |2 - 2| = 0 \] Now substituting into the limit: \[ f'(2^+) = \lim_{h \to 0^+} \frac{h - 0}{h} = \lim_{h \to 0^+} 1 = 1 \] ### Step 3: Determine the Left-Hand Derivative \( f'(2^-) \) The left-hand derivative at \( x = 2 \) is calculated similarly: \[ f'(2^-) = \lim_{h \to 0^+} \frac{f(2 - h) - f(2)}{-h} \] Substituting \( f(x) \): \[ f(2 - h) = |(2 - h) - 2| = |-h| = h \quad (\text{since } h > 0) \] Again, we know: \[ f(2) = 0 \] Now substituting into the limit: \[ f'(2^-) = \lim_{h \to 0^+} \frac{h - 0}{-h} = \lim_{h \to 0^+} -1 = -1 \] ### Final Answers Thus, we have: \[ f'(2^+) = 1 \quad \text{and} \quad f'(2^-) = -1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

f(x)=sqrt(4x-x^(2)-3)

Find the value of c, of mean value theorem.when (a) f(x) = sqrt(x^(2)-4) , in the interval [2,4] (b) f(x) = 2x^(2) + 3x+ 4 in the interval [1,2] ( c) f(x) = x(x-1) in the interval [1,2].

If f(x) = sqrt(4x^(2)+4x-3) then int(x+3)/(f(x))dx is equal

If f(x) = (sqrt(4 +x)-2)/(x) is continuous x=0 then the value of f(0) is

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

Using Lagrange's theorem , find the value of c for the following functions : (i) x^(3) - 3x^(2) + 2x in the interval [0,1/2]. (ii) f(x) = 2x^(2) - 10x + 1 in the interval [2,7]. (iii) f(x) = (x-4) (x-6) in the interval [4,10]. (iv) f(x) = sqrt(x-1) in the interval [1,3]. (v) f(x) = 2x^(2) + 3x + 4 in the interval [1,2].

f(x)=x(x-4)^(2), interval [0,4]

If f(x)=(x-4)/(2sqrt(x)), then f'(4) is equal to