Home
Class 12
MATHS
If (d)/(dx) ((1 +x^2 +x^4)/( 1+x+x^2))...

If ` (d)/(dx) ((1 +x^2 +x^4)/( 1+x+x^2))=ax +b ` then ` a= ` and b=…..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function given by: \[ f(x) = \frac{1 + x^2 + x^4}{1 + x + x^2} \] and set the result equal to \( ax + b \). We will find the values of \( a \) and \( b \). ### Step 1: Differentiate the function using the Quotient Rule The Quotient Rule states that if you have a function \( \frac{u}{v} \), then its derivative is given by: \[ \frac{d}{dx} \left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, let: - \( u = 1 + x^2 + x^4 \) - \( v = 1 + x + x^2 \) Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). ### Step 2: Calculate \( \frac{du}{dx} \) \[ u = 1 + x^2 + x^4 \] Differentiating \( u \): \[ \frac{du}{dx} = 0 + 2x + 4x^3 = 2x + 4x^3 \] ### Step 3: Calculate \( \frac{dv}{dx} \) \[ v = 1 + x + x^2 \] Differentiating \( v \): \[ \frac{dv}{dx} = 0 + 1 + 2x = 1 + 2x \] ### Step 4: Apply the Quotient Rule Now substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the Quotient Rule: \[ \frac{d}{dx} \left(\frac{u}{v}\right) = \frac{(1 + x + x^2)(2x + 4x^3) - (1 + x^2 + x^4)(1 + 2x)}{(1 + x + x^2)^2} \] ### Step 5: Simplify the numerator Now we will expand and simplify the numerator: 1. Expand \( (1 + x + x^2)(2x + 4x^3) \): \[ = 2x + 4x^3 + 2x^2 + 4x^4 \] \[ = 2x + 2x^2 + 4x^3 + 4x^4 \] 2. Expand \( (1 + x^2 + x^4)(1 + 2x) \): \[ = 1 + 2x + x^2 + 2x^3 + x^4 + 2x^5 \] \[ = 1 + 2x + x^2 + 2x^3 + x^4 + 2x^5 \] Now, subtract the second expansion from the first: \[ (2x + 2x^2 + 4x^3 + 4x^4) - (1 + 2x + x^2 + 2x^3 + x^4 + 2x^5) \] ### Step 6: Combine like terms Combining like terms gives: - The constant term: \( -1 \) - The \( x \) term: \( 2x - 2x = 0 \) - The \( x^2 \) term: \( 2x^2 - x^2 = x^2 \) - The \( x^3 \) term: \( 4x^3 - 2x^3 = 2x^3 \) - The \( x^4 \) term: \( 4x^4 - x^4 = 3x^4 \) - The \( x^5 \) term: \( -2x^5 \) So the numerator simplifies to: \[ x^2 + 2x^3 + 3x^4 - 1 - 2x^5 \] ### Step 7: Set the result equal to \( ax + b \) Now we need to compare the simplified derivative with \( ax + b \). From the simplified expression, we can see that the linear term is missing, hence: - \( a = 0 \) (coefficient of \( x \)) - \( b = -1 \) (constant term) ### Final Result Thus, we have: \[ a = 0, \quad b = -1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If d/(dx)((1+x^4+x^8)/(1+x^2+x^4))=ax^3+bx ,then

If (d)/(dx)backslash((1+x^(2)+x^(4))/(1+x+x^(2)))=ax+b, then (a,b)=

(d)/(dx)((x^(2))/(x-1))=

Given that, (d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B What is the value of A ?

Given that, (d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B What is the value of B ?

Given that (d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B What is the value of A?

d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

(d)/(dx)[tan^(-1)((10x)/(4-6x^(2)))]=

(d)/(dx)(x^((1)/(x)))