Home
Class 12
MATHS
If x=a [ cos t +log tan (t //2 )...

If ` x=a [ cos t +log tan (t //2 ) ] , y= a sin t, dy / dx=`

A

` tan t `

B

` cos t`

C

`sec t`

D

cosec t

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the given parametric equations \(x = a \left( \cos t + \log \left( \tan \left( \frac{t}{2} \right) \right) \right)\) and \(y = a \sin t\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(t\) Given: \[ y = a \sin t \] Differentiating \(y\) with respect to \(t\): \[ \frac{dy}{dt} = a \cos t \] ### Step 2: Differentiate \(x\) with respect to \(t\) Given: \[ x = a \left( \cos t + \log \left( \tan \left( \frac{t}{2} \right) \right) \right) \] Differentiating \(x\) with respect to \(t\): \[ \frac{dx}{dt} = a \left( -\sin t + \frac{1}{\tan \left( \frac{t}{2} \right)} \cdot \frac{d}{dt} \left( \tan \left( \frac{t}{2} \right) \right) \right) \] Using the chain rule, we know: \[ \frac{d}{dt} \left( \tan \left( \frac{t}{2} \right) \right) = \sec^2 \left( \frac{t}{2} \right) \cdot \frac{1}{2} \] Thus, \[ \frac{dx}{dt} = a \left( -\sin t + \frac{1}{\tan \left( \frac{t}{2} \right)} \cdot \frac{1}{2} \sec^2 \left( \frac{t}{2} \right) \right) \] Since \(\tan \left( \frac{t}{2} \right) = \frac{\sin \left( \frac{t}{2} \right)}{\cos \left( \frac{t}{2} \right)}\), we can rewrite: \[ \frac{dx}{dt} = a \left( -\sin t + \frac{1}{\frac{\sin \left( \frac{t}{2} \right)}{\cos \left( \frac{t}{2} \right)}} \cdot \frac{1}{2} \cdot \frac{1}{\cos^2 \left( \frac{t}{2} \right)} \right) \] This simplifies to: \[ \frac{dx}{dt} = a \left( -\sin t + \frac{\cos \left( \frac{t}{2} \right)}{2 \sin \left( \frac{t}{2} \right) \cos^2 \left( \frac{t}{2} \right)} \right) \] ### Step 3: Find \(\frac{dy}{dx}\) Using the formula: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{a \cos t}{a \left( -\sin t + \frac{\cos \left( \frac{t}{2} \right)}{2 \sin \left( \frac{t}{2} \right) \cos^2 \left( \frac{t}{2} \right)} \right)} \] The \(a\) cancels out: \[ \frac{dy}{dx} = \frac{\cos t}{-\sin t + \frac{\cos \left( \frac{t}{2} \right)}{2 \sin \left( \frac{t}{2} \right) \cos^2 \left( \frac{t}{2} \right)}} \] ### Final Result Thus, the final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\cos t}{-\sin t + \frac{\cos \left( \frac{t}{2} \right)}{2 \sin \left( \frac{t}{2} \right) \cos^2 \left( \frac{t}{2} \right)}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x=a (cos t +log (tan ((t)/(2)) )) ,y =a sin t ,then (dy)/(dx) =

If x=a(cos t+(log tan t)/(2)),y=a sin t evaluate (d^(2)y)/(dx^(2)) at t=(pi)/(3)

If x=a(cos t+(log tan)(1)/(2)),y=a sin t then (dy)/(dx) is equal to

If x=a(cos t+(1)/(2)log tan^(2)t) and y=a sin t then find (dy)/(dx) at t=(pi)/(4)

If x=a ( tcos t- sin t ) ,y =a ( tsin t +cos t ),then (dy)/(dx) =

If x=a sin t and y=a(cos t+(log tan t)/(2)) find (d^(2)y)/(dx^(2))

If x = a (cos t + t sin t), y = a (sin t - t cos t), then at t = pi//4,(dy)/(dx)

If x=a sin t and y=a(cos t+log tan(t)/(2)) find (d^(2)y)/(dx^(2))