Home
Class 12
MATHS
if x = a cos^3 t, y = b sin^3 t, the...

if ` x = a cos^3 t, y = b sin^3 t, ` then ` (dy)/(dx)` =

A

`3 ( b//a) tan^2 t sec ^2 t `

B

` -(a//b) cot t`

C

` -(b//a) tan t `

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = a \cos^3 t\) and \(y = b \sin^3 t\), we will use the chain rule for differentiation. Here are the steps: ### Step 1: Differentiate \(y\) with respect to \(t\) We start by differentiating \(y\) with respect to \(t\): \[ y = b \sin^3 t \] Using the chain rule, we have: \[ \frac{dy}{dt} = b \cdot 3 \sin^2 t \cdot \frac{d}{dt}(\sin t) = b \cdot 3 \sin^2 t \cdot \cos t \] Thus, \[ \frac{dy}{dt} = 3b \sin^2 t \cos t \] ### Step 2: Differentiate \(x\) with respect to \(t\) Next, we differentiate \(x\) with respect to \(t\): \[ x = a \cos^3 t \] Using the chain rule again, we have: \[ \frac{dx}{dt} = a \cdot 3 \cos^2 t \cdot \frac{d}{dt}(\cos t) = a \cdot 3 \cos^2 t \cdot (-\sin t) \] Thus, \[ \frac{dx}{dt} = -3a \cos^2 t \sin t \] ### Step 3: Find \(\frac{dy}{dx}\) Now, we can find \(\frac{dy}{dx}\) using the formula: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \] Substituting the expressions we found: \[ \frac{dy}{dx} = \frac{3b \sin^2 t \cos t}{-3a \cos^2 t \sin t} \] ### Step 4: Simplify the expression Now, we simplify the expression: \[ \frac{dy}{dx} = \frac{3b \sin^2 t \cos t}{-3a \cos^2 t \sin t} = \frac{b \sin t}{-a \cos t} \] This simplifies to: \[ \frac{dy}{dx} = -\frac{b}{a} \tan t \] ### Final Answer Thus, the final result is: \[ \frac{dy}{dx} = -\frac{b}{a} \tan t \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

x=a cos t, y=b sin t

If x=a cos^3 t " and "y=a sin ^3 t "then find " dy/dx

If x=a cos^(4)t, y=b sin^(4)t then (dy)/(dx) at t = (3 pi)/(4) is

If x = 2 cos^4(t+3), y = 3 sin^4(t+3) , show that (dy)/(dx) = - sqrt((3y)/(2x))

If x=a cos^(3)ty=a sin^(3)t then (dy)/(dx)=

If x= sin (log t ),y =log (sin t ) ,then (dy)/(dx)=

If x =3 cos t-2cos ^(3) t,y =3 sin t- 2 sin ^(3) t,then (dy)/(dx) =

If x= 2 cos^(4) (t+3) ,y=3sin ^(4) (t+3) ,then (dy)/(dx)=

If x=a cos ^(3) t,y =a sin ^(3)t,then " at" t = (pi)/(3) ,(dy)/(dx) =

If y=a sin t, x=a cos t then find (dy)/(dx) .