Home
Class 12
MATHS
If x=2 log cot t and y= tan t + ...

If ` x=2 log cot t and y= tan t + cot t, ` then `( dy)/(dx) sin 2 t +1=`

A

` cos^2 t `

B

` sin^2 t `

C

` cos 2 t`

D

` 2 cos^2 t `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) given the parametric equations \(x = 2 \log(\cot t)\) and \(y = \tan t + \cot t\), and then evaluate \(\frac{dy}{dx} \sin(2t) + 1\). ### Step 1: Differentiate \(y\) with respect to \(t\) Given: \[ y = \tan t + \cot t \] We differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = \frac{d}{dt}(\tan t) + \frac{d}{dt}(\cot t) \] Using the derivatives \(\frac{d}{dt}(\tan t) = \sec^2 t\) and \(\frac{d}{dt}(\cot t) = -\csc^2 t\), we have: \[ \frac{dy}{dt} = \sec^2 t - \csc^2 t \] ### Step 2: Differentiate \(x\) with respect to \(t\) Given: \[ x = 2 \log(\cot t) \] We differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = 2 \cdot \frac{d}{dt}(\log(\cot t)) \] Using the chain rule, we know \(\frac{d}{dt}(\log(u)) = \frac{1}{u} \cdot \frac{du}{dt}\): \[ \frac{dx}{dt} = 2 \cdot \frac{1}{\cot t} \cdot \frac{d}{dt}(\cot t) \] Now, \(\frac{d}{dt}(\cot t) = -\csc^2 t\), so: \[ \frac{dx}{dt} = 2 \cdot \frac{-\csc^2 t}{\cot t} = -2 \frac{\csc^2 t}{\cot t} \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\sec^2 t - \csc^2 t}{-2 \frac{\csc^2 t}{\cot t}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\sec^2 t - \csc^2 t}{-2 \frac{\csc^2 t}{\cot t}} = \frac{\cot t (\sec^2 t - \csc^2 t)}{-2 \csc^2 t} \] ### Step 4: Simplify \(\frac{dy}{dx}\) We can express \(\sec^2 t\) and \(\csc^2 t\) in terms of sine and cosine: \[ \sec^2 t = \frac{1}{\cos^2 t}, \quad \csc^2 t = \frac{1}{\sin^2 t} \] Thus: \[ \frac{dy}{dx} = \frac{\cot t \left(\frac{1}{\cos^2 t} - \frac{1}{\sin^2 t}\right)}{-2 \cdot \frac{1}{\sin^2 t}} = \frac{\cot t \left(\frac{\sin^2 t - \cos^2 t}{\sin^2 t \cos^2 t}\right)}{-2 \cdot \frac{1}{\sin^2 t}} = \frac{\cot t (\sin^2 t - \cos^2 t)}{-2 \cos^2 t} \] ### Step 5: Multiply by \(\sin(2t)\) and add 1 Now we need to compute: \[ \frac{dy}{dx} \sin(2t) + 1 \] Using the identity \(\sin(2t) = 2 \sin t \cos t\): \[ \frac{dy}{dx} \sin(2t) = \frac{\cot t (\sin^2 t - \cos^2 t)}{-2 \cos^2 t} \cdot 2 \sin t \cos t \] This simplifies to: \[ = \frac{\cot t (\sin^2 t - \cos^2 t) \sin t}{-\cos^2 t} \] Now, substituting \(\cot t = \frac{\cos t}{\sin t}\): \[ = \frac{\frac{\cos t}{\sin t} (\sin^2 t - \cos^2 t) \sin t}{-\cos^2 t} = \frac{\cos t (\sin^2 t - \cos^2 t)}{-\cos^2 t} = -\frac{\sin^2 t - \cos^2 t}{\cos t} \] Adding 1: \[ -\frac{\sin^2 t - \cos^2 t}{\cos t} + 1 \] ### Final Result The final expression simplifies to: \[ 1 + \cos(2t) = 2 \cos^2 t \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x=sin t-t cos t and y = t sin t +cos t, then what is (dy)/(dx) at point t=(pi)/(2)?

If x=tan t,y=cos t , 0

If x=t log t ,y =t^(t) ,then (dy)/(dx)=

If x = log (1 + t^(2)) " and " y = t - tan^(-1)t, " then" dy/dx is equal to

If x=a (cos t +log (tan ((t)/(2)) )) ,y =a sin t ,then (dy)/(dx) =

If x=a(t-sin t) and y=a(1+cos t) then (dy)/(dx)=

If x=log t , t gt 0 and y=1/t , then (d^(2)y)/(dx^(2)) , is

If x= sin (log t ),y =log (sin t ) ,then (dy)/(dx)=

If x =3 cos t-2cos ^(3) t,y =3 sin t- 2 sin ^(3) t,then (dy)/(dx) =