Home
Class 12
MATHS
If t (1 +x^2) =x and x^2 +t^2 = y th...

If ` t (1 +x^2) =x and x^2 +t^2 = y ` then at ` x=2 ` the value of `(dy)/(dx)` is

A

`488/125`

B

`88/125`

C

`101/125`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. **Equations Given:** \[ t(1 + x^2) = x \quad \text{(1)} \] \[ y = x^2 + t^2 \quad \text{(2)} \] 2. **Differentiate Equation (2) with respect to \(x\):** We need to find \(\frac{dy}{dx}\). Using the chain rule, we differentiate \(y\): \[ \frac{dy}{dx} = \frac{d}{dx}(x^2) + \frac{d}{dx}(t^2) \] \[ \frac{dy}{dx} = 2x + 2t \frac{dt}{dx} \quad \text{(3)} \] 3. **Find \(t\) from Equation (1):** Rearranging Equation (1) to solve for \(t\): \[ t = \frac{x}{1 + x^2} \] 4. **Differentiate \(t\) with respect to \(x\):** We need to find \(\frac{dt}{dx}\): Using the quotient rule: \[ \frac{dt}{dx} = \frac{(1 + x^2)(1) - x(2x)}{(1 + x^2)^2} \] Simplifying: \[ \frac{dt}{dx} = \frac{1 + x^2 - 2x^2}{(1 + x^2)^2} = \frac{1 - x^2}{(1 + x^2)^2} \quad \text{(4)} \] 5. **Substitute \(t\) and \(\frac{dt}{dx}\) back into Equation (3):** Now we substitute \(t\) and \(\frac{dt}{dx}\) into the expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = 2x + 2\left(\frac{x}{1 + x^2}\right)\left(\frac{1 - x^2}{(1 + x^2)^2}\right) \] \[ = 2x + \frac{2x(1 - x^2)}{(1 + x^2)^3} \quad \text{(5)} \] 6. **Evaluate \(\frac{dy}{dx}\) at \(x = 2\):** Substitute \(x = 2\) into Equation (5): \[ \frac{dy}{dx} = 2(2) + \frac{2(2)(1 - 2^2)}{(1 + 2^2)^3} \] \[ = 4 + \frac{2(2)(1 - 4)}{(1 + 4)^3} \] \[ = 4 + \frac{4(-3)}{5^3} \] \[ = 4 - \frac{12}{125} \] \[ = \frac{500}{125} - \frac{12}{125} = \frac{488}{125} \] 7. **Final Answer:** The value of \(\frac{dy}{dx}\) at \(x = 2\) is: \[ \frac{dy}{dx} = \frac{488}{125} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x = 2t^3 and y = 3t^2 , then value of (dy)/(dx) is

If t(1+x^(2))=x and x^(2)+t^(2)=y then (dy)/(dx)atx=2 is

If tan x = (2t)/(1 -t^(2)) " and sin y" = (2t)/(1 + t^(2)) , then the value of (dy)/(dx) is

If x=t-1/t, and y=t+1/t," then the value of "(dy)/(dx)" at "t=2 is

x=2+t^(3),y=3t^(2) ,then the value (dy)/(dx)

If sin x=(2t)/(1+t^(2)) and cot y=(1-t^(2))/(2t) then the value of (d^(2)x)/(dy^(2))=

If x = e^(t) sin t and y = e^(t) cos t, t is a parameter , then the value of (d^(2) x)/( dy^(2)) + (d^(2) y)/(dx^(2)) at t = 0 , is :