Home
Class 12
MATHS
If x = a sin 2 theta (1 + cos 2theta ...

If `x = a sin 2 theta (1 + cos 2theta ), y=b cos 2 theta (1- cos 2 theta )` then `(dy)/(dx)=`

A

` ( b tan theta)/( a)`

B

` ( a tan theta)/(b)`

C

`( b cot theta)/(a)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = a \sin 2\theta (1 + \cos 2\theta)\) and \(y = b \cos 2\theta (1 - \cos 2\theta)\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(\theta\) We start with the equation for \(y\): \[ y = b \cos 2\theta (1 - \cos 2\theta) \] Using the product rule, we differentiate \(y\): \[ \frac{dy}{d\theta} = b \left( \frac{d}{d\theta}(\cos 2\theta) \cdot (1 - \cos 2\theta) + \cos 2\theta \cdot \frac{d}{d\theta}(1 - \cos 2\theta) \right) \] Calculating the derivatives: - \(\frac{d}{d\theta}(\cos 2\theta) = -2\sin 2\theta\) - \(\frac{d}{d\theta}(1 - \cos 2\theta) = 2\sin 2\theta\) Substituting these into the equation: \[ \frac{dy}{d\theta} = b \left( -2\sin 2\theta (1 - \cos 2\theta) + \cos 2\theta \cdot 2\sin 2\theta \right) \] Simplifying: \[ \frac{dy}{d\theta} = b \left( -2\sin 2\theta + 2\sin 2\theta \cos 2\theta \right) \] \[ = 2b \sin 2\theta (\cos 2\theta - 1) \] ### Step 2: Differentiate \(x\) with respect to \(\theta\) Next, we differentiate \(x\): \[ x = a \sin 2\theta (1 + \cos 2\theta) \] Using the product rule again: \[ \frac{dx}{d\theta} = a \left( \frac{d}{d\theta}(\sin 2\theta) \cdot (1 + \cos 2\theta) + \sin 2\theta \cdot \frac{d}{d\theta}(1 + \cos 2\theta) \right) \] Calculating the derivatives: - \(\frac{d}{d\theta}(\sin 2\theta) = 2\cos 2\theta\) - \(\frac{d}{d\theta}(1 + \cos 2\theta) = -2\sin 2\theta\) Substituting these into the equation: \[ \frac{dx}{d\theta} = a \left( 2\cos 2\theta (1 + \cos 2\theta) + \sin 2\theta (-2\sin 2\theta) \right) \] Simplifying: \[ \frac{dx}{d\theta} = 2a \cos 2\theta (1 + \cos 2\theta) - 2a \sin^2 2\theta \] \[ = 2a \left( \cos 2\theta + \cos^2 2\theta - \sin^2 2\theta \right) \] Using the identity \(\cos^2 2\theta - \sin^2 2\theta = \cos 4\theta\): \[ \frac{dx}{d\theta} = 2a \left( \cos 2\theta + \cos 4\theta \right) \] ### Step 3: Calculate \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2b \sin 2\theta (\cos 2\theta - 1)}{2a (\cos 2\theta + \cos 4\theta)} \] This simplifies to: \[ \frac{dy}{dx} = \frac{b \sin 2\theta (\cos 2\theta - 1)}{a (\cos 2\theta + \cos 4\theta)} \] ### Final Answer Thus, the final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{b \sin 2\theta (\cos 2\theta - 1)}{a (\cos 2\theta + \cos 4\theta)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x= a sin 2theta (1+ cos 2theta) , y= b cos 2theta(1- cos 2theta) , then (dy)/(dx) =

x=a sin2 theta(1+cos2 theta), y=b cos2 theta(1-cos2 theta) then (dy)/(dx)=

If x=a sin2 theta(1+cos2 theta) and y=b cos2 theta(1-cos2 theta), then prove that (dy)/(dx)=(b)/(a)tan theta

If x=a ( theta -sin theta ) ,y=a(1-cos theta ) ,then (dy)/(dx) =

If x = r cos theta, y = r sin theta, r =a(1+cos theta) then find (dy)/(dx)

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

If x = sin theta - cos theta and y = sin theta + cos theta , then (dy)/(dx) =

If =a sin2 theta(1+cos2 theta),y=b cos2 theta(1-os2 theta)x=a sin2 theta(1+cos2 theta),y=b cos2 theta(1-os2 theta) and (dy)/(dx)=k tan theta then the value of k is